
Technical Systems Consultants, Inc.

FLEX Programmer’s Manual

Flex User Group
This document has been created
on behalf of the FLEX User Group
to keep FLEX Alive.

Many thanks to the copyright holder
of this manual for releasing the
copyright to the Flex User Group.

FLEX Programmer’s Manual

Copyright (C) 1979 by
TECHNICAL SYSTEMS CONSULTANTS,

INC.
P.O. Box 2574

West Lafayette, Indiana 47906

All Rights Reserved

COPYRIGHT NOTICE

The FLEX Operating System and all of its associated documentation are
provided for personal use and enjoyment by the purchaser. The entire
program and all documentation, including this manual are copyrighted by
Technical Systems Consultants, Inc., and reproduction by any means is
strictly prohibited. Use of the FLEX Operating System and/or its
documentation, or any part thereof, for any purpose other than single
end use is strictly prohibited.

FLEX is a trademark of Technical Systems Consultants, Inc.

-ii-

CONTENTS

 I. Introduction 1
 II. Disk Operating System 3
 DOS Memory Map 3
 User Callable Routines 8
 User Written Commands 16
 Disk Resident Commands 17
 Comments about Commands 18
 Examples of DOS Calls 19

 III. File Management System 21
 File Control Blocks 22
 FMS Entry Points 26
 FMS Global Variables 27
 Random Files 37
 Error Numbers 38

 IV. Disk Drivers 41

 V. Disk Structures 43
 Diskette Initialization 43
 Directory Sectors 44
 Data Sectors 44
 Binary Files 45
 Text Files 46

 VI. Writing Utility Commands 47
 Example Program 49

 VII. The DOS LINK Utility 49

 VIII. Printer Routines 53
 The P Utility 54

 IX. General Information 57
 Interrupts in Flex 57
 System Memory Map 57

-iii-

Preface

The purpose of the Advanced Programmer’s Manual is to provide the
assembler language programmer with the information required to make
effective use of the available system routines and functions. This
manual applies to the 6809 version of FLEX. The programmer should keep
this manual close at hand while learning the system. It is organized to
make it convenient as a quick reference guide as well as a thorough
reference manual. The manual is not written for the novice programmer
and assumes the user to have a thorough understanding of assembler
language programming techniques.

-iv-

Introduction

The FLEX Operating System consists of three main parts: the Disk
Operating System (DOS) which processes commands, the File Management
System (FMS) which manages files on a diskette, and the Utility Command
Set, which are the user-callable commands. The Utility Command Set is
described in the FLEX User’s Guide. Details of the Disk Operating
System and File Management System portions of FLEX are described in this
manual, which is intended for the programmer who wishes to write his own
commands or process disk files from his own program.

When debugging programs which use disk files and the File Management
System, the user should take the following precautions:

1. Write-protect the system diskette by exposing or covering the
write-protect cutout on the diskette. See the FLEX User’s Guide for
further details on this operation. This will prevent destruction of the
system disk in case the program starts running wild.

2. Use an empty scratch diskette as the working diskette to which your
program will write any data files. If something goes wrong and the
diskette is destroyed, no valuable data will have been lost.

3. Test your program repeatedly, especially with "special cases" of
data input which may not be what the progam is expecting. Well-written
programs abort gracefully when detecting errors, not dramatically.

A careful programmer, using the information in this manual, should be
able to make the fullest use of his floppy disk system.

FLEX Advanced Programmer’s Guide

-1-

DISCLAIMER

This product is intended for use only as described in this document and
the FLEX User’s Guide. Technical Systems Consultants will not be
responsible for the proper functionng of features or parameters. The
user is urged to abide by the warnings and cautions issued in this
document lest valuable data or diskettes be destroyed.

PATCHING "FLEX"

It is not advisable to patch FLEX. Technical Systems Consultants cannot
be responsible for any destructive side-effects which may result from
attempts to patch FLEX.

FLEX Advanced Programmer’s Guide

-2-

THE DISK OPERATING SYSTEM

The Disk Operating System (DOS) forms the communication link between the
user (via a computer terminal) and the File Management System. All
commands are accepted through DOS. Functions such as file specification
parsing, command argument parsing, terminal I/O, and error reporting are
all handled by DOS. The following sections describe the DOS global
variable storage locations (Memory Map), the DOS user callable
subroutines, and give examples of some possible uses.

DOS MEMORY MAP

The following is a description of those memory locations within the DOS
portion of FLEX which contain information of interest to the programmer.
The user is cautioned against utilizing for his own purposes any
locations documented as being either "reserved" or "system scratch", as
this action may cause destruction of data.

$C080-$C0FF - Line Buffer
The line buffer is a 128 byte area into which characters typed at
the keyboard are placed by the routine INBUF. All characters
entered from the keyboard are placed in this buffer with the
exception of control Characters which have been deleted by entering
the backspace character do not appear in the buffer, nor does the
backspace character itself appear. The carriage return signaling
the end of the keyboard input is, however, put in the buffer. This
buffer is also used to hold the STARTUP file during a coldstart
(boot) operation.

$CC00 - TTYSET Backspace Character
This is the character which the routine INBUF will interpret as the
Backspace character. It is user definable through the TTYSET DOS
Utility. Default = $08, a Ctrl H (ASCII BS).

$CC01 - TTYSET Delete Character
This is the character which the routine INBUF will interpret as the
line cancel or Delete character. It is user definable through the
TTYSET DOS Utility. Default = $18, Ctrl X (ASCII CAN).

$CC02 - TTYSET End of Line Character
This is the character DOS recognizes as the multiple command per
line separator. It is user definable through the TTYSET Utility.
Default = $3A, a colon (:).

$CC03 - TTYSET Depth Count
This byte determins how many lines DOS will print on a page before
Pausing or issuing Ejects. It may be set by the user with the
TTYSET command. Default = 0.

$CC04 - TTYSET Width Count
This byte tells DOS how many characters to output on each line. If
zero, there is no limit to the number output. This count may be set
by the user using TTYSET. Default = 0.

FLEX Advanced Programmer’s Guide

-3-

$CC05 - TTYSET Null Count
This byte informs DOS if the number of null or pad characters to be
output after each carriage return, line feed pair. This count maybe
set using TTYSET. Default = 4.

$CC06 - TTYSET Tab Character
This byte defines a tab character which may be used by other
programs, such as the Editor. DOS itself does not make use of the
Tab character. Default = 0, no tab character defined.

$CC07 - TTYSET Backspace Echo Character
This is the character the routine INBUF will echo upon the receipt
of a backspace character. If the backspace echo character is set
to a $08, and the backspace character is also a $08, FLEX will
output a space ($20) prior to the outputting of the backspace echo
character. Default = 0.

$CC08 - TTYSET Eject Count
The Eject Count instructs DOS as to the number of blank lines to be
output after each page. (A page is a set of lines equal in number
to the Depth Count). If this byte is zero, no Eject lines are
output. Default = 0.

$CC09 - TTYSET Pause Control
The Pause byte instructs DOS what action to take after each page is
output. A zero value indicates that the pause feature is enabled;
a non-zero value, pause is disabled. Default = $FF, pause
disabled.

$CC0A - TTYSET Escape Character
The Escape character causes DOS to pause after an output line.
Default = $1B, ASCII ESC.

$CC0B - System Drive Number
This is the number of the disk drive from which commands are
loaded. If this byte is $FF, both drives 0 and 1 will be searched.
Default = drive #0.

$CC0C - Working Drive Number
This is the number of the default disk drive referenced for
non-command files. If this byte is $FF, both drives 0 and 1 will
be searched. Default = drive #0.

$CC0D - System Scratch

$CC0E-$CC10 - System Date Registers
These three bytes are used to store the system date. It is stored
in binary form with the month in the first byte, followed by the
day, then the year. The year byte contains only the tens and ones
digits.

FLEX Advanced Programmer’s Guide

-4-

$CC11 - Last Terminator
This location contains the most recent non-alphanumeric character
encountered in processing the line buffer. See commentary on the
routines NXTCH and CLASS in the section "User-Callable System
Routines".

$CC12-$CC13 - User Command Table Address
The programmer may store into these locations the address of a
command table of his own construction. See the section called
"User-Written commands" for details. Default = 0000, no user
command table is defined.

$CC14-$CC15 - Line Buffer Pointer
These locations contain the address of the next character in the
Line Buffer to be precessed. See documentation of the routines
INBUFF, NXTCH, GETFIL, GETCHR, and DOCMND in the section
"User-Callable System Routines" for instances of its use.

$CC16-$CC17 - Escape Return Register
These locations contain the address to which to jump if a RETURN is
typed while output has been stopped by an Escape Character. See
the FLEX User’s Guide, TTYSET, for information on Escape
processing. See also the documentation for the routine PCRLF in
the section "User-Callable System Routines" for details.

$CC18 - Current Character
This location contains the most recent character taken from the
Line Buffer by the NXTCH routine. See documentation of the NXTCH
routine for additional details.

$CC19 - Previous Character
This location contains the previous character taken from the Line
Buffer by the NXTCH routine. See documentation of the NXTCH
routine for additional details.

$CC1A - Current Line Number
This location contains a count of the number of lines currently on
the page. This value is compared to the Line Count value to
determine if a full page has been printed.

$CC1B-$CC1C - Loader Address Offset
These locations contain the 16-bit bias to be added to the load
address of a routine being loaded from the disk. See documentation
of the System Routine LOAD for details. These locations are also
used as scratch by some system routines.

$CC1D - Transfer Flag
After a program has been loaded from the disk (see LOAD
documentation), this location is non-zero if a transfer address was
found during the loading proc This location is also used as scratch
by some system routines.

FLEX Advanced Programmer’s Guide

-5-

$CC1E-$CC1F - Transfer Address
If the Tranfer Flag was set non-zero by a load from the disk (see
LOAD documentation), these locations contain the last transfer
address encountered. If the Transfer Flag was set zero by the disk
load, the content of these locations is indeterminate.

$CC20 - Error Type
This location contains the error number returned by several of the
File Management System functions. See the "Error Numbers" section
of this document for an interpretation of the error numbers.

$CC21 - Special I/O Flag
If this byte is non-zero, the PUTCHR routine will ignore the TTYSET
Width feature and also ignore the Escape Character. The routine
RSTRIO clears this byte. Default = 0.

$CC22 - Output Switch
If zero, output performed by the PUTCHR routine is through the
routine OUTCH. If non-zero, the routine OUTCH2 is used. See
documentation of these routines for details.

$CC23 - Input Switch
If zero, input performed by GETCHR is through the routine INCH. If
it is non-zero, the routine INCH2 is used. See documentation of
these routines for details.

$CC24-$CC25 - File Output Address
These bytes contain the address of the File Control Block being
used for file output. If the bytes are zero, no file output is
performed. See PUTCHR description for details. These locations are
set by RSTRIO.

$CC26-$CC27 - File Input Address
These bytes contain the address of the File Control Block being
used for file input. If the bytes are zero, no file input is
performed. The routine RSTRIO clears these bytes. See GETCHR for
details.

$CC28 - Command Flag
This location is non-zero if DOS was called from a user program via
the DOCMND entry point. See documentation of DOCMND for details.

$CC29 - Current Output Column
This location contains a count of the number of characters
currently in the line being output to the terminal. This is
compared to the TTYSET Width Count to determine when to start a new
line. The output of a control character resets this count to zero.

$CC2A - System Scratch

FLEX Advanced Programmer’s Guide

-6-

$CC2B-$CC2C - Memory End
These two bytes contain the end of user memory. This location is
set during system boot and may be read by programs requiring this
information.

$CC2D-$CC2E - Error Name Vector
If these bytes are zero, the routine RPTERR will use the file
ERRORS.SYS as the error file. If they are non-zero, they are
assumed to be the address of an ASCII string of characters (in
directory format) of the name of the file to be used as the error
file. See the description of RPTERR for more details.

$CC2F - File Input Echo Flag
If this byte is non-zero (default) and input is being done through
a file, the character input will be echoed to the output channel.
If this byte is zero, the character retrieved will not be echoed.

$CC30-CC32 - System Scratch

$CC33 - CPU Type Flag
This flag indicates the type of computer system that is running
Flex. If the type of computer is unknown, this byte contains zero.

$CC35-$CC36 - Reserved Printer Area Pointer
These two bytes contain the address of the reserved printer driver
area. If no area has been assigned via the RM command, these bytes
will contain zero.

$CC37-$CC38 - Printer Area Length
These two bytes contain the length of the reserved printer area.
If no area has been assigned, these bytes contain zero.

$CC3C-CCBF - System Constants

$CCC0-$CCD7 - Printer Initialize
This area is reserved for the overlay of the system printer
initialization subroutine vectors.

$CCD8-$CCE7 - Printer Ready Check
This area is reserved for the overlay of the system "check for
printer ready" subroutine vector.

$CCE4-$CCF7 - Printer Output
This area is reserved for the overlay of the system printer output
character routine vector. See Printer Routine descriptions for
details.

$CCF8-$CCF7 - System Scratch

FLEX Advanced Programmer’s Guide

-7-

USER-CALLABLE SYSTEM ROUTINES

Unless specifically documented otherwise, the contents of all registers
should be presumed destroyed by calls to these routines. All routines,
unless otherwise indicated, should be called with a JSR instruction. In
the 6809 version of FLEX the Y and U registers are preserved across all
the following routines. The A,B, and X registers should be considered
changed except where noted otherwise. Often a value or status is
returned in one of these registers.

$CD00 (COLDS) Coldstart Entry Point

The BOOT program loaded from the disk jumps to this address to
initialize the FLEX system. Both the Disk Operating System (DOS)
portion and the File Management System portion (FMS) of FLEX are
initialized. After initialization, the FLEX title line is printed
and the STARTUP file, if one exists, is loaded and executed. This
entry point is only for use by the BOOT program, not by user
programs. Indiscriminate use of the Coldstart Entry Point by user
programs could result in the destruction of the diskette.
Documentation of this routine is included here only for
completeness.

$CD03 (WARMS) Warmstart Entry Point

This is the main re-entry point into DOS from user programs. A JMP
instruction should be used to enter the Warmstart Entry Point. At
this point, the main loop of DOS is entered. The main loop of DOS
checks the Last Terminator location for a TTYSET end-of-line
character. If one is found, it is assumed that there is another
command on the line, and DOS attempts to process it. If no
end-of-line is in the Last Terminator location DOS assumes that the
current command line is finished, and looks for a new line to be
input from the keyboard. If, however, DOS was called from a user
program through the DOCMND entry point, control will be returned to
the user program when the end of a command line is reached.

$CD06 (RENTER) DOS Main Loop Re-entry Point

This is a direct entry point into the DOS main loop. None of the
Warmstart initialization is performed. This entry point must be
entered by a JMP instruction. Normally, this entry point is used
internally by DOS and user-written programs should not have need to
use it. For an example of use, see "Printer Driver" section for
details.

FLEX Advanced Programmer’s Guide

-8-

$CD09 (INCH) Input Character
$CD0C (INCH2) Input Character

Each of these routines inputs one character from the keyboard,
returning it to the calling program in the A-register. The address
portion of these entries points to a routine in the Custom I/O
package. They may be altered by changing that package. The GETCHR
routine normally uses INCH but may be instructed to use INCH2 by
setting the "Input Switch" non-zero (see Memory Map). The users’s
program may change the jump vector at the INCH address to refer to
some other input routine such as a routine to get a character from
paper tape. The INCH2 address should never be altered. The
Warmstart Entry Point resets the INCH jump vector to the same
routine as INCH2 and sets the Input Switch to zero. RSTRIO also
resets these bytes. User programs should use the GETCHR routine,
documented below, rather than calling INCH, because INCH does not
check the TTYSET parameters.

$CD0F (OUTCH) Output Character
$CD12 (OUTCH2) Output Character

On entry to each of these routines, the A-register should contain
the character b Both of these routines output the character in the
A-register to an output device. The OUTCH routine usually does the
same as OUTCH2; however, OUTCH may be changed by programs to refer
to some other output routine. For example, OUTCH may be changed to
drive a line printer. OUTCH2 is never changed, and always points
to the output routine in the Custom I/O package. This address may
not be patched to refer to some other output routine. The routine
PUTCHR, documented below, calls one of these two routines,
depending on the content of the location "Output Switch" (see
Memory Map). The Warmstart Entry Point resets the OUTCH jump
vector to the same routine as OUTCH2, and sets the Output Switch to
zero. RSTRIO also resets these locations. User routines should
use PUTCHR rather than calling OUTCH or OUTCH2 directly since these
latter two do not check the TTYSET parameters.

$CD15 (GETCHR) Get Character

This routine gets a single character from the keyboard. The
character is returned to the calling program in the A-register.
The Current Line Number location is cleared by a call to GETCHR.
Because this routine honors the TTYSET parameters, its use is
preferred to that of INCH. If the location "Input Switch" is
non-zero, the routine INCH2 will be used for input. If zero, the
byte at "File Input Address" is checked. If it is non-zero, the
address at this location is used as a File Control Block of a
previously opened input file and a character is retrieved from the
file. If zero, a character is retrieved via the INCH routine. The
X and B registers are preserved.

FLEX Advanced Programmer’s Guide

-9-

$CD18 (PUTCHR) Put Character

This routine outputs a character to a device, honoring all of the
TTYSET parameters. On entry, the character should be in the
A-register. If the "Special I/O Flag" (see Memory Map) is zero, the
column count is checked, and a new line is started if the current
line is full. If an ACIA is being used to control the monitor
terminal, it is checked for a TTYSET Escape Character having been
typed. If so, output will pause at the end of the current line.
If the location "Output Switch" is non-zero, the routine OUTCH2 is
used to send the character. If zero, the location File Output
Address is checked. If it is non-zero the contents of this
location is used as a address of a File Control Block of a
previously opened for write file, and the character is written to
the file. If zero, the routine OUTCH is called to process the
character. Normally, OUTCH sends the character to the terminal.
The user program may, however, change the address portion of the
OUTCH entry point to go to another character output routine. The X
and B registers are preserved.

$CD1B (INBUFF) Input into Line Buffer

This routine inputs a line from the keyboard into the Line Buffer.
The TTYSET Backspace and Delete characters are checked and
processed if encountered. All other control characters except
RETURN and LINE FEED, are ignored. The RETURN is placed in the
buffer at the end of the line. A LINE FEED is entered into the
buffer as a space character but is echoed back to the terminal as a
Carriage Return and Line Feed pair for continuation of the text on
a new line. At most, 128 characters may be entered on the line,
including the final RETURN. If more are entered, only the first
127 are kept, the RETURN being the 128th. On exit, the Line Buffer
Pointer is pointing to the first character in the Line Buffer.
Caution: The command line entered from the keyboard is kept in the
Line Buffer. Calling INBUFF from a user program will destroy the
command line, including all unprocessed commands on the same line.
Using INBUFF and the Line Buffer for other than DOS commands may
result in unpredictable side-effects.

$CD1E (PSTRNG) Print String

This routine is similar to the PDATA routine in SWTBUG and DISKBUG.
On entry, the X-register should contain the address of the first
character of the string to be printed. The string must end with an
ASCII EOT character ($04). This routine honors all of the TTYSET
conventions when printing the string. A carriage return and line
feed are output before the string. The B register are preserved.

FLEX Advanced Programmer’s Guide

-10-

$CD21 (CLASS) Classify Character

This routine is used for testing if a character is alphanumeric
(i.e. a letter or a number). On entry, the character should be in
the A-register. If the character is alphanumeric, the routine
returns with the carry flag cleared. If the character is not
alphanumeric, the carry flag is set and the character is stored in
the Last Terminator location. All registers are preserved by this
routine.

$CD24 (PCRLF) Print Carriage Return and Line Feed

In addition to printing a carriage return and line feed, this
routine checks and honors several TTYSET conditions. On entry,
this routine checks for a TTYSET Escape Character having been
entered while the previous line was being printed. If so, the
routine waits for another TTYSET Escape Character a RETURN to be
typed. If a RETURN was entered, the routine clears the Last Termi
location so as to ignore any commands remaining in the command
line, and then jumps to the address contained in the Escape Return
Register locations. Unless changed by the user’s program, this
address is that of the Warmstart Entry Point. If, instead of a
RETURN, another TTYSET Escape Character was typed, or it wasn’t
necessary to wait for one, the Current Line Number is checked. If
the last line of the page has been printed and the TTYSET Pause
feature is enabled, the routine waits for a RETURN or a TTYSET
Escape Character, as above. Note that all pausing is done before
the carriage return and line feed are printed. The carriage return
and line feed are now printed, followed by the number of nulls
specified by the TTYSET Null Count. If the end of the page was
encountered on entry to this routine, an "eject" is performed by
issuing additional carriage return, line feeds, and nulls until the
total number of blank lines is that specified in the TTYSET Eject
Count. The X register is preserved.

$CD27 (NXTCH) Get Next Buffer Character

The character in location Current Character is placed in location
Previous Character. The character to which the Line Buffer Pointer
points is taken from the Line Buffer and saved in the Current
Character location. Multiple spaces are skipped so that a string
of spaces looks no different than a single space. The Line Buffer
Pointer is advanced to point to the next character unless the
character just fetched was a RETURN or TTYSET End-Of-Line
character. Thus, once an End-of-Line character or RETURN is
encountered, additional calls to NXTCH will continue to return the
same end-of-line character or RETURN. NXTCH cannot be used to
cross into the next command in the buffer. NXTCH exits through the
routine CLASS, automatically classifying the character. On exit,
the character is in the A-register, the carry is clear if the
character is alphanumeric, and the B-register and X- register are
preserved.

FLEX Advanced Programmer’s Guide

-11-

$CD2A (RSTRIO) Restore I/O Vector

This routine forces the OUTCH jump vector to point to the same
routine as does the OUTCH2 vector. The Output Switch location and
the Input Switch location are set to zero. The INCH jump vector is
reset to point to the same address as the INCH2 vector. Both the
File Input Address and the File Output Address are set to zero.
The A-register and B-register are preserved by this routine

$CD2D (GETFIL) Get File Specification

On entry to this routine, the X-register must contain the address
of a File Control Block (FCB), and the Line Buffer Pointer must be
pointing to the first character of a file specification in the Line
Buffer. This routine will parse the file specification, storing
the various components in the FCB to which the X-register points.
If a drive number was not specified in the file specification,
the working drive number will be used. On exit, the carry bit will
be clear if no error was detected in processing the file
specification. The carry bit will be set if there was a format
error int the file specifiation. If no extension was specified in
the file specification, none is stored. The calling program should
set the default extension desired after GETFIL has been called by
using the SETEXT routine. The Line Buffer Pointer is left pointing
to the character immediately beyond the separator, unless the
separator is a carriage return or End of Line character. If an
error was detected, Error number 21 is stored in the error status
byte of the FCB. The X register is preserved with a call to this
routine.

$CD30 (LOAD) File Loader

On entry, the system File Control Block (at $C840) must contain the
name of a file which has been opened for binary reading. This
routine is used to load binary files only, not text files. The
file is read from the disk and stored in memory, normally at the
load addresses specified in the binary file itself. It is possible
to loa file into a different memory area by using the Loader
Address Offset locations. The 16-bit value in the Loader Address
Offset locations is added to the addresses read from the binary
file. Any carry generated out of the most significant bit of the
address is lost. The transfer address, if any is encountered, is
not modified by the Loader Address Offset. Note that the setting
of a value in the Loader Address Offset does not modify any part of
the content of the binary file. It does not act as a program
relocator in that it does not change any addresses in the program
itself, merely the location of the program in memory. If the the
file is to be loaded without an offset, be certain to clear the
Loader Address Offset locations before calling this routine. On
exit, the Transfer Address Flag is zero if no transfer address was
found. This flag is non-zero if a transfer address record was
encountered in the binary file, and the Transfer Address locations
contain the last transfer address encountered. The disk file is
closed on exit. If a disk error is encountered, an error message

FLEX Advanced Programmer’s Guide

-12-

is issued and control is returned to DOS at the Warmstart Entry
Point.

$CD33 (SETEXT) Set Extension

On entry, the X-register should contain the address of the FCB into
which the default extension is to be stored if there is not an
extension already in the FCB. The A-register, on entry, should
contain a numeric code indicating what the default extension is to
be. The numeric codes are described below. If there is already an
extension in the FCB (possibly stored there by a call to GETFIL),
this routine returns to the calling program immediately. If there
is no extension in the FCB, the extension indicated by the numeric
code in the A-register is placed in the FCB File Extension area.
The legal codes are:

 0 - BIN
 1 - TXT
 2 - CMD
 3 - BAS
 4 - SYS
 5 - BAK
 6 - SCR
 7 - DAT
 8 - BAC
 9 - DIR
 10 - PRT
 11 - OUT

Any values other than those above are ignored, the routine
returning without storing any extensions. The X register is
preserved in this routine.

$CD36 (ADDBX) Add B-register to X-register

The content of the B-register is added to the content of the
X-register. This routine is here for compatibility with 6800 FLEX.

$CD39 (OUTDEC) Output Decimal Number

On entry, the X-register contains the address of the most
significant byte of a 16-bit (2 byte), unsigned, binary number.
The B-register, on entry, should contain a space suppression flag.
The number will be printed as a decimal number with leading zeroes
suppressed. If the B-register was non-zero on entry, spaces will
be substituted for the leading zeroes. If the B-register is zero
on entry, printing of the number will start with the first non-zero
digit.

$CD3C (OUTHEX) Output Hexadecimal Number

On entry, the X-register contains the address of a single binary
byte. The byte to which the X-register points is printed as 2
hexadecimal digits. The B and X registers are preserved.

FLEX Advanced Programmer’s Guide

-13-

$CD3F (RPTERR) Report Error

On entry to this routine, the X-register contains the address of a
File Control Block in which the Error Status Byte is non-zero. The
error code in the FCB is stored by this routine in the Error Type
location. A call to the routine RSTRIO is made and location Error
Vector is checked. If this location is zero, the file ERRORS.SYS
is opened for random read. If this location is non-zero, it is
assumed to be an address pointing to an ASCII string (containing
any necessary null pad characters) of a legal File name plus
extension (string should be 11 characters long). This user
provided file is then opened for random read. The error number is
used in a calculation to determine the record number and offset of
the appropriate error string message in the file. Each error
message string is 63 characters in length, thus allowing 4 messages
per sector. If the string is found, it is printed on the terminal.
If the string is not found (due to too large of error number being
encountered) or if the error file itself was not located on the
disk, the error number is reported to the monitor terminal as part
of the message:

 DISK ERROR #nnn

Where "nnn" is the error number being reported. A description of
the error numbers is given elsewhere in this document.

$CD42 (GETHEX) Get Hexadecimal Number

This routine gets a hexadecimal number from the Line Buffer. On
entry, the Line Buffer Pointer must point to the first character of
the number On exit, the carry bit is cleared if a valid number was
found, the B-register is set non-zero, and the X-register contains
the value of the number. The Line Buffer Pointer is left pointing
to the character immediately following the separator character,
unless that character is a carriage return or End of Line. If the
first character examined in the Line Buffer is a separator
character (such as a comma), the carry bit is still cleared, but
the B-register is set to zero indicating that no actual number was
found. In this case, the value returned in the X-register is zero.
If a non-hexadecimal character is found while processing the
number, characters in the Line Buffer are skipped until a separator
character is found, then the routine returns to the caller with the
carry bit set. The number in the Line Buffer may be of any length,
but the value is truncated to between 0 and $FFFF inclusive.

$CD45 (OUTADR) Output Hexadecimal Address

On entry, the X register contains the address of the most
significant byte of a 2 byte hex value. The bytes to which the X
register points are printed as 4 hexadecimal digits.

FLEX Advanced Programmer’s Guide

-14-

$CD48 (INDEC) Input Decimal Number

This routine gets an unsigned decimal number from the Line Buffer.
On entry, the Line Buffer Pointer must point to the first character
of the number in the Line Buffer. On exit, the carry bit is
cleared if a valid number was found, the B-register is set
non-zero, and the X-register contains the binary value of the
number. The Line Buffer Pointer is left pointing as described in
the routine GETHEX. If the first character examined in the buffer
is a separator character (such as a comma), the carry bit is still
cleared, but the B-register is set to zero indicating that no
actual number was found. In this case, the number returned in X is
zero. The number in the Line Buffer may be of any length but the
result is truncated to 16 bit precision.

$CD4B (DOCMND) Call DOS as a Subroutine

This entry point allows a user-written program to pass a command
string to DOS for processing, and have DOS return control to the
user program on completion of the commands. The command string
must be placed in the Line Buffer by the user program, and the Line
Buffer Pointer must be pointing to the first character of the
parameters and commands in the Line Buffer. The command string
must terminate with a RETURN character ($0D hex). After the
commands have been processed, DOS will return control to the user’s
program with the B-register containing any error code received from
the File Management System. The B-register will be zero if no
programs which may destroy the user program in memory. An example
of a use of this feature of DOS is that of a program wanting to
save a portion of memory as a binary file on the disk. The program
could build a SAVE command in the Line Buffer with the desired file
name and parameters, and call the DOCMND entry point. On return,
the memory will have been saved on the disk.

$CD4E (STAT) Check Terminal Input Status

This routine may be called to check the status of the terminal
input device (to see if a character has been typed on the
keyboard). If a character has been hit, the Z condition code will
be cleared on return (a not-equal condition). If no character has
been hit, the Z condition code will be set (an equal condition).
No registers, other than the CC-register, are altered.

FLEX Advanced Programmer’s Guide

-15-

USER-WRITTEN COMMANDS

The programmer may write his own commands for DOS. These commands may
be either disk-resident as disk files with a CMD extension, or they may
be memory-resident in either RAM or ROM.

MEMORY-RESIDENT COMMANDS:

A memory-resident command is a program, already in memory, to which DOS
will transfer when the proper command is entered from the keyboard. The
command which invokes the program, and the entry-point of the program,
are stored in a User Command Table created by the programmer in memory.
Each entry in the User Command Table has the following format:

FCC ’command’ (Name that will invoke the program)
FCB 0
FDB entry address (The entry address of the program)

The entire table is ended by a zero byte. For example, the following
table contains the commands DEBUG (entry at $3000) and PUNT (entry at
$3200):

FCC ’DEBUG’ Command Name
FCB 0
FDB $3000 Entry Address for DEBUG
FCC ’PUNT’ Command name
FCB 0
FDB $3200 Entry address for PUNT
FCB 0 End of Command table

The address of the User Command Table is made known to DOS by storing it
in the User Command Table Address locations (see Memory Map).

The User Command Table is searched before the disk directory, but after
DOS’s own command table is searched. The DOS command table contains
only the GET and MON commands. Therefore, the user may not define his
own GET and MON commands.

Since the User Command Table is searched before the disk directory, the
programmer may have commands with the same name as those on the disk.
However, in this case, the commands on the disk will never be executed
while the User Command Table is known to DOS. The User Command Table
may be deactivated by clearing the User Command Table Address locations.

FLEX Advanced Programmer’s Guide

-16-

DISK-RESIDENT COMMANDS:

A disk-resident command is an assembled program, with a transfer
address, which has been saved on the disk with a CMD extension. The
ASMB section of the FLEX User’s Guide describes the way to assign a
transfer address to a program being assembled.

Disk commands, when loaded into memory, may reside anywhere in the User
RAM Area; the address is determined at assembly time by using an ORG
statement. Most commands may be assembled to run in the Utility Command
Space (See Memory Map). Most of the commands supplied with FLEX run in
the Utility Command Space. For this reason, the SAVE command cannot be
used to save information which is in the Utility Command Space or System
FCB space as this information would be destroyed when the SAVE command
is loaded. The SAVE.LOW command is to be used in this case. The
SAVE.LOW command loads into memory at location $100 and allows the
saving of programs in the $C100 region.

The System FCB area is used to load all commands from the disk.
Commands written to run in the Utility Command Space must not overflow
into the System FCB area. Once loaded, the command itself may use the
System FCB area for scratch or as an FCB for its own disk I/O. See the
example in the FMS section.

FLEX Advanced Programmer’s Guide

-17-

GENERAL COMMENTS ABOUT COMMANDS

User-written commands are entered by a JMP instruction. On completion,
they should return control to DOS by jumping (JMP instruction) to the
Warmstart Entry Point (see Memory Map).

Processing Arguments.

User-written commands are required to process any arguments entered from
the keyboard. The command name and the arguments typed are in the Line
Buffer area (see Memory Map). The Line Buffer Pointer, on entry to the
command, is pointing to the first character of the first argument, if
one exists. If there are no arguments, the Line Buffer Pointer is
pointing to either an end-of-line character or a carriage return. The
last terminator character is the character that followed the name of the
command, and will normally be a comma, a space, end of line, etc. The
DOS routines NXTCH, GETFIL, and GETHEX should be used by the command for
processing the arguments.

Processing Errors.

If the command, while executing, receives an error status from either
DOS or FMS of such a nature that the command must be aborted, the
program should jump to the Warmstart Entry Point of DOS after issuing an
appropriate error message. Similarly, if the command should detect an
error on its own, it should issue a message and return to DOS through
the Warmstart Entry Point.

FLEX Advanced Programmer’s Guide

-18-

EXAMPLES OF USING DOS ROUTINES

1. Setting up a file spec in the FCB can be done in the following
manner. The example assumes the Line Buffer Pointer is pointing to the
first character of a file specification, and the desired resulting file
spec should default to a TXT extension.

LDX #FCB Point to FCB
JSR GETFIL Get file spec into FCB
BCS ERROR Report error if one
LDA #1 Set extension code (TXT)
JSR SETEXT Set the default extension

The user may now open the file for the desired action, since the file
spec is correctly set up in the FCB. Refer to the FMS examples for
opening files.

2. The following examples demonstrate some simple uses of the basic I/O
functions provided by DOS.

LDA #’A Setup an ASCII A
JSR PUTCHR Call DOS out character
LDX #STRING Point to string
JSR PSTRNG Print CR & LF + string

The above simple routines are to show the basic mechanism for calling
and using DOS I/O routines.

FLEX Advanced Programmer’s Guide

-19-

FLEX Advanced Programmer’s Guide

-20-

THE FILE MANAGEMENT SYSTEM

The File Management System (FMS), forms the communication link between
the DOS and the actual Disk Hardware. The FMS performs all file
allocation and removal on the disk. All file space is allocated
dynamically, and the space used by files is immediately reusable upon
that file’s deletion. The user of the FMS need not be concerned with
the actual location of a file on the disk, or how many sectors it
requires.

Communication with the FMS is done through File Control Blocks. These
blocks contain the information about a file, such as its name and what
drive it exists on. All disk I/O performed through FMS is "one
character at a time" I/O. This means that programs need only send or
request a single character at a time while doing file data transfers.
In effect, the disk looks no different than a computer terminal. Files
may be opened for either reading or writing. Any number of files may be
opened at any one time, as long as each one is assigned its own File
Control Block

The FMS is a command language whose commands are represented by various
numbers called Function Codes. Each Function Code tells FMS to perform
a specific function such as open a file for read, or delete a file. In
general, making use of the various functions which the FMS offers, is
quite simple. The index register is made to point to the File Control
Block which is to be used, the Function Code is stored in the first byte
of the File Control Block, and FMS is called as a subroutine (JSR). At
no time does the user ever have to be concerned with where the file is
being located on the disk, how long it is, or where its directory entry
is located. The FMS does all of this automatically.

Since the file structure of FLEX is a linked structure, and the disk
space is allocated dynamically, it is possible for a file to exist on
the disk in a set of non-contiguous sectors. Normally, if a disk has
just been formatted, a file will use consecutive sectors on the disk.
As files are created and deleted, however, the disk may become
"fragmented". Fragmentation results in the sectors on the disk becoming
out of order physically, even though logically they are still all
sequential. This is a characteristic of "linked list" structures and
dynamic file allocation methods. The user need not be concerned with
this fragmentation, but should be aware of the fact that files may exist
whose sectors seem to be spattered all over the disk. The only result
of fragmentation is the slowing down of file read times, because of the
increased number of head seeks necessary while reading the file.

FLEX Advanced Programmer’s Guide

-21-

THE FILE CONTROL BLOCK (FCB)

The FCB is the heart of the FLEX File Management System (FMS). An FCB
is a 320 byte long block of RAM, in the user’s program area, which is
used by programs to communicate with FMS. A separate FCB is needed for
each open file. After a file has been closed, the FCB may be re-used to
open another file or to perform some other disk function such as Delete
or Rename. An FCB may be placed anywhere in the user’s program area
(except page zero) that the programmer wishes. The memory reserved for
use as an FCB need not be preset or initialized in any way. Only the
parameters necessary to p the function need be stored in the FCB; the
File Management System will initialize those areas of the FCB needed for
its use.

In the following description of an FCB, the byte numbers are relative to
the beginning of the FCB; i.e. byte 0 is the first byte of the FCB.

DESCRIPTION OF AN FCB

Byte 0 Function Code

The desired function code must be stored in this byte by the user
before calling FMS to process the FCB. See the section describing
FMS Function Codes.

Byte 1 Error Status Byte

If an error was detected during the processing of a function, FMS
stores the error number in this byte and returns to the user with
the CPU Z-Condition Code bit clear, i. e. a non-zero condition
exists. This may be tested by the BEQ or BNE instruction.

Byte 2 Activity Status

This byte is set by FMS to a "1" if the file is open for read, or
"2" if the file is open for writing. This byte is checked by
several FMS function processors to determine if the requested
operation is legal. A Status Error is returned for illegal
operations.

The next 12 bytes (3-14) comprise the "File Specification" of the file
being referenced by the FCB. A "File Specification" consists of a
drive number, file name, and file extension. Some of the FMS functions
do not require the file name or extension. See the documentation of the
individual function codes for details.

Byte 3 Drive Number

This is the hardware drive number whose diskette contains the file
being referenced. It should be binary 0 to 3.

FLEX Advanced Programmer’s Guide

-22-

The next 24 bytes (4-27) comprise the "Directory Information" portion of
the FCB. This is the exact same information which is contained in the
diskette directory entry for the file being referenced.

Bytes 4-11 File Name

This is the name of the file being referenced. The name must start
with a letter and contain only letters, digits, hyphens, and/or
underscores. If the name is less than 8 characters long, the
remaining bytes must be zero. The name should be left adjusted in
its field.

Bytes 12-14 Extension

This is the extension of the file name for the file being
referenced. It must start with a letter and contain only letters,
digits, hyphens, and/or underscores. If the extension is less than
3 characters long, the remaining bytes must be zero. The extension
should be left Files with null extensions should not be created.

Byte 15 File Attributes

At present, only the most significant 4 bits are defined in this
byte. These bits are used for the protection status bits and are
assigned as follows:

BIT 7 = Write Protect
BIT 6 = Delete Protect
BIT 5 = Read Protect
BIT 4 = Catalog Protect

Setting these bits to 1 will activate the appropriate protection
status. All undefined bits of this byte should remain 0!

Byte 16 Reserved for future system use

Bytes 17-18 Starting disk address of the file

These two bytes contain the hardware track and sector numbers,
respectively, of the first sector of the file.

Bytes 19-20 Ending disk address of the file

These two byes contain the hardware track and sector numbers,
respectively,of the last sector of the file.

Bytes 21-22 File size

This is a 16-bit number indicating the number of sectors in the
file.

FLEX Advanced Programmer’s Guide

-23-

Byte 23 File Sector Map Indicator

If this byte is non-zero (usually $02), the file has been created
as a random access file and contains a File Sector Map. See the
description of Random Files for details.

Byte 24 Reserved for future system use

Bytes 25-27 File Creation Date

These three bytes contain the binary date of the files creation.
The first byte is the month, the second is the day, and the third
is the year (only the tens ond ones digits).

Bytes 28-29 FCB List Pointer

All FCBs which are open for reading or writing are chained
together. These two bytes contain the memory address of the FCB
List Pointer bytes of the next FCB in the chain. These bytes are
zero if this FCB is the last FCB in the chain. The first FCB in
the chain is pointed to by the FCB Base Pointer. (See Global
Variables).

Bytes 30-31 Current Position

These bytes contain the hardware track and sector numbers,
respectively, of the sector currently in the sector buffer portion
of the FCB. If the file is being written, the sector to which
these bytes point has not yet been written to the diskette; it is
still in the buffer.

Bytes 32-33 Current Record Number

These bytes contain the current logical Record Number of the sector
in the FCB buffer.

Bytes 34 Data Index

This byte contains the address of the next data byte to be fetched
from (if reading) or stored into (if writing) the sector buffer.
This address is relative to the beginning of the sector, and is
advanced automatically by the Read/Write Next Byte function. The
user program has no need to manipulate this byte.

Byte 35 Random Index

This byte is used in conjuction with the Get Random Byte From
Sector function to read a specific byte from the sector buffer
without having to sequentially skip over any intervening bytes.
The address of the desired byte, relative to the beginning of the
sector, is stored in Random Index by the user, and the Get Random
Byte From Sector function is issued to FMS. The specified data
byte will be returned in the A-register. A value less than 4 will

FLEX Advanced Programmer’s Guide

-24-

access one of the linkage bytes in the sector. User data starts at
an index of 4.

Bytes 36-46 Name Work Buffer

These bytes are used internally by FMS as temporary storage for a
file name. These locations are not for use by a user program.

Bytes 47-49 Current Directory Address

If the FCB is being used to process directory information with the
Get/Put Information Record functions, these three bytes contain the
track number, sector number, and starting data index of the
directory entry whose content is in the Directory Information
portion of the FCB. The values in these three bytes are updated
automatically by the Get Information Record function.

Bytes 50-52 First Deleted Directory Pointer

These bytes are used internally by FMS when looking for a free
entry in the directory to which to assign the name of a new file.

Bytes 53-63 Scratch Bytes

These are the bytes into which the user stores the new name and
extension of a file being renamed. The new name is formatted the
same as described above under File Name and File Extension.

Byte 59 Space Compression Flag

If a file is open for read or write, this byte indicates if space
compression is being performed. A value of zero indicates that
space compression is to be done when reading or writing the data.
This is the value that is stored by the Open For Read and Open for
Write functions. A value of $FF indicates that no space
compression is to be done. This value is what the user must store
in this byte, after opening the file, if space compression is not
desired. (Such as for binary files). A positive non-zero value in
this byte indicates that space compression is currently in
progress; the value being a count of the number of spaces processed
thus far. (Note that although this byte overlaps the Scratch Bytes
described above, there is no conflict since the Space Compression
Flag is used only when a file is open, and the Scratch Bytes are
used only by Rename, which requires that the file be closed). In
general, this byte should be 0 while working with text type files,
and $FF for binary files.

Bytes 64-319 Sector Buffer

These bytes contain the data contained in the sector being read or
written. The first four bytes of the sector are used by the system.
The remaini 252 are used for data storage.

FLEX Advanced Programmer’s Guide

-25-

FILE MANAGEMENT SYSTEM - Entry Points

$D400 - FMS Initialization

This entry point is used by the DOS portion of FLEX to initialize
the File Management System after a coldstart. There should be no
need for a user-written program to use this entry point. Executing
an FMS Initialization at the wrong time may result in the
destruction of data files, necessitating a re-initialization of the
diskette.

$D403 - FMS Close

This entry point is used by the DOS portion of FLEX at the end of
each command line to close any files left open by the command
processor. User-written programs may also use this entry point to
close all open files; however, if an error is detected in trying to
close a file, any remaining files will not be closed. Thus the
programmer is cautioned against using this routine as a substitute
for the good programming practice of closing files individually.
There are no arguments to this routine. It is entered by a JSR
instruction as though it were a subroutine. On exit, the CPU
Z-Condition code is set if no error was detected (i.e. a "zero"
condition exists). If an error was detected, the CPU Z-Condition
code bit is clear and the X-register contains the address of the
FCB causing the error.

$D406 FMS Call

This entry point is used for all other calls to the File Management
System. A function code is stored in the Function Code byte of the
FCB, the address of the FCB is put in the X-register, and this
entry point is called by a JSR instruction. The function codes are
documented elsewhere in this document. On exit from this entry
point, the CPU Z-Condition code bit is set if no error was detected
in processing the function. This bit may be tested with a BEQ or
BNE instruction. If an error was detected, the CPU Z-Condition
code bit is cleared and the Error Status byte in the FCB contains
the error number. Under all circumstances, the address of the FCB
is still in the X-register on exit from this entry point. Some of
the functions require additional parameters in the A and/or
B-registers. See the documentation of the Function codes for
details. The B,X,Y and U registers are always preserved with a call
to FMS.

FLEX Advanced Programmer’s Guide

-26-

GLOBAL VARIABLES

This section describes those variables within the File Management System
which may be of interest to the programmer. Any other locations in the
FMS area should not be used for data storage by user programs.

$D409 - $D40A FCB Base Pointer

These locations contain the address of the FCB List Pointer bytes
of the first FCB in the chain of open files. The address in these
locations is managed by FMS and the programmer should not store any
values in these locations. A user program may, however, want to
chain through the FCBs of the open files for some reason, and the
address stored in these locations is the proper starting point.
Remember that the address is that of the FCB List Pointer locations
in the FCB, not the first word of the FCB. A value of zero in
these locations indicates that there are no open files.

$D40B - $D40C Current FCB Address

These locations contain the address of the last FCB processed by
the File Management System. The address is that of the first word
of the FCB.

$D435 Verify Flag

A non-zero value in this location indicates that FMS will check
each sector written for errors immediately after writing it. A
zero value indicates that no error checking on writes is to be
performed. The default value is "non-zero".

FLEX Advanced Programmer’s Guide

-27-

FMS FUNCTION CODES

The FLEX File Management System is utilized by the user through function
codes. The proper function code number is placed, by the user, in the
Function Code byte of the File Control Block (FCB) before calling FMS
(Byte 0). FMS should be called by a JSR to the "FMS call" entry. On
entry to FMS, the X-register should contain the address of the FCB. On
exit from FMS, the CPU Z-condition code bit will be clear if an error
was detected while processing the function. This bit may be tested by
the BNE and BEQ instructions. Note: In the following examples, the line
"JSR FMS" is referencing the FMS Call entry at $D406.

Function 0 - Read/Write Next Byte/Character

If the file is open for reading, the next byte is fetched from the
file and returned to the calling program in the A-register. If the
file is open for writing, the content of the A-register on entry is
placed in the buffer as the next byte to be written to the file.
The Compression Mode Flag must contain the proper value for
automatic space compression to take place, if desired (see
Description of the FCB, Compression Mode Flag for details). On
exit, this function code remains unchange in the Function Code byte
of the FCB; thus, consecutive read/writes may be performed without
having to repeatedly store the function code. When reading, an
End-of-File error is returned when all data in the file has been
read. When the current sector being read is empty, the next sector
in the file is prepared for processing automatically, without any
action being required of the user. Similarly, when writing, full
sectors are automatically written to the disk without user
intervention.

Example:

If reading -
LDX #FCB Point to the FCB
JSR FMS Call FMS
BNE ERROR Check for errors
The character read is now in A

If writing -
LDA CHAR Get the character
LDX #FCB Point to the FCB
JSR FMS Call FMS
BNE ERROR Check for errors
The character in A has been written.

FLEX Advanced Programmer’s Guide

-28-

Function 1 - Open for Read

The file specified in the FCB is opened for read-only access. If
the file cannot be found, an error is returned . The only parts of
the FCB which must be preset by the programmer before issuing this
function are the file specification parts (drive number, file name,
and file extension) and the function code. The remaining parts of
the FCB will be initialized by the Open process. The Open process
sets the File Compression Mode Flag to zero, indicating a text
file. If the file is binary, the programmer should set the File
Compression Mode Flag to $FF, after opening the file, to disable
the space compression feature. On exit from FMS, after opening a
file, the function code in the FCB is automatically set to zero
(Read/Write Next Byte Function) in anticipation of I/O on the file.

Example:

LDX #FCB Point to the FCB
[Set up file spec in FCB]
LDA #1 Set open function mode
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
The file is now open for text reading

To set for binary, continue with the following
LDA #$FF Set FF for sup. flag
STA 59,X Store in suppression flag

Function 2 - Open for Write

This is the same as Function 1, Open For Read, except that the file
must not already exist in the diskette directory, and it is opened
for write-only access. A file opened for write may not be read
unless it is first closed and then re-opened for read-only. The
space compression flag should be treated the same as described in
"Open for Read". A file is normally opened as a sequential file
but may be created as a random file by setting the FCB location
File Sector Map byte non-zero immediately following an open for
write operation. Refer to the section on Random Files for more
details. The file will be created on the drive specified unless the
drive spec is $FF in which case the file will be created on the
first drive found to be ready.

Example:

LDX #FCB Point to the FCB
[Set up file spec in FCB]
LDA #2 Setup open for write code
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
The file is now open for text write.
For binary write, follow the example in Read open.

FLEX Advanced Programmer’s Guide

-29-

Function 3 - Open for Update

This function opens the file for both read and write. The file
must not be open and must exist on the specified drive. If the
drive spec is $FF, all drives will be searched. Once the file has
been opened for update, four operations may be performed on it; 1.
sequential read, 2. random read, 3. random write, and 4. close
file. Note that it is not possible to do sequential writes to a
file open for update. This implies that it is not possible to
increase the size of a file which is open for update.

Function 4 - Close File

If the file was opened for reading, a close merely removes the FCB
from the chain of open files. If the file was opened for writing,
any data remaining in the buffer is first written to the disk,
padding with zeroes if necessary, to fill out the sector. If a
file was opened for writing but never written upon, the name of the
file is removed from the diskette directory since the file contains
no data.

Example:

LDX #FCB Point to the FCB
LDA #4 Setup close code
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
File has now been closed

Function 5 - Rewind File

Only files which have been opened for read may be rewound. On exit
from FMS, the function code in the FCB is set to zero, anticipating
a read operation on the file. If the programmer wishes to rewind a
file which is open for writing so that it may now be read, the file
must first be closed, th re-opened for reading.

Example:

Assuming the file is open for read:
LDX #FCB Point to the FCB
LDA #2 Setup rewind code
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
File is now rewound & ready for read.

FLEX Advanced Programmer’s Guide

-30-

Function 6 - Open Directory

This function opens the directory on the diskette for access by a
program. The FCB used for this function must not already be open
for use by a file. On entry, the only information which must be
preset in the FCB is the drive number; no file name is required.
The directory entries are read by using the Get Information Record
function. The Put Information Record function is used to write a
directory entry. The normal Read/Write Next Byte function will not
function correctly on an FCB which is opened for directory access.
It is not necessary to close an FCB which has been opened for
directory access after the directory manipulation is finished. The
user should normally not need to access the directory.

Function 7 - Get Information Record

This function should only be issued on an FCB which has been opened
with the Open Directory funcion. Each time the Get Information
Record function is issued, the next directory entry will be loaded
into the Directory Information area of the FCB (see Description of
the FCB for details of the format of a directory entry). All
directory entries, including deleted and unused entries are read
when using this function. After an entry has been read, the FCB is
said to "point" to the directory entry just read; the Current
Directory Address bytes in the FCB refer to the entry just read.
An End-of-File error is returned when the end of the directory is
reached.

Example:

To get the 3rd directory entry:
LDX #FCB Point to the FCB
LDA DRIVE Get the drive number
STA 3,X Store in the FCB
LDA #6 Setup open dir code
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
LDB #3 Set counter to 3

LOOP LDA #7 Setup get rec code
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
DECB Decrement the counter
BNE LOOP Repeat til finished
The 3rd entry is now in the FCB

FLEX Advanced Programmer’s Guide

-31-

Function 8 - Put Information Record

This function should only be issued on an FCB which has been opened
with the Open Directory function. The directory information is
copied from the Directory Information portion of the FCB into the
directory entry to which the FCB currently points. The directory
sector just updated is then re-written automatically on the
diskette to ensure that the directory is up-to-date. A user
program should normally never have to write into a directory.
Careless use of this function can lead to the destruction of data
files, necessitating a re-initialization of the diskette.

Function 9 - Read Single Sector

This function is a low-level interface directly to the disk driver
which permits the reading of a single sector, to which the Current
Position bytes of the FCB point, into the Sector Bufffer area of
the FCB. This function is normally used internally within FLEX and
a user program should never need to use it. The Read/Write Next
Byte function should be used instead, whenever possible. Extreme
care should be taken when using this function since it does not
conform to the usual conventions to which most of the other FLEX
functions adhere.

Example:

LDX #FCB Point to the FCB
LDA TRACK Get track number
STA 30,X Set current track
LDA SECTOR Get sector number
STA 31,X Set current sector
LDA #9 Setup function code
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
The sector is now in the FCB

Function 10 ($0A hex) - Write Single Sector

This function, like the Read Single Sector function, is a low-level
interface directly to the disk driver which permits the writing of
a single sector. As such, it requires extreme care in its use.
This function is normally used internally by FLEX, and a user
program should never need to use it. The Read/Write Next Byte
function should be used whenever possible. Careless use of the
Write Single Sector function may result in the destruction of data,
necessitating the re-initialization of the diskette. The disk
address being written is taken from the Current Position bytes of
the FCB; the data is taken from the FCB Sector Buffer. This
function honors the Verify Flag (see Global Variables section for a
description of the Verify Flag), and will check the sector after
writing it if directed to do so by the Verify Flag.

FLEX Advanced Programmer’s Guide

-32-

Function 11 ($0B hex) - Reserved for future system use

Function 12 ($0C hex) - Delete File

This function deletes the file whose specification is in the FCB
(drive numbers, file name, and extension). The sectors used by the
file are released to the system for re-use. The file should not be
open when this function is issued. The file specification in the
FCB is altered during the delete process.

Example:

LDX #FCB Point to FCB
[setup file spec in FCB]
LDA #12 Setup function code
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
File has now been deleted

Function 13 ($0D hex) - Rename File

On entry, the file must not be open, the old name must be in the
File Specification area of the FCB, and the new name and extension
must be in the Scratch Bytes area of the FCB. The file whose
specification is in the FCB is renamed to the name and extension
stored in the FCB Scratch Bytes area. Both the new name and the
new extension must be specified; neither the name nor the extension
can be defaulted.

Example:

LDX #FCB Point to FCB
[setup both file specs in FCB]
LDA #13 Setup function code
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
File has been renamed

Function 14 ($0E hex) - Reserved for future system use

FLEX Advanced Programmer’s Guide

-33-

Function 15 ($0F hex) - Next Sequential Sector

On entry the file should be open for either reading or writing (not
update). If the file is open for reading, this function code will
cause all of the remaining (yet unread) data bytes in the current
sector to be skipped, and the data pointer will be positioned at
the first data byte of the next sequential sector of the file. If
the file is open for write, this operation will cause the remainder
of the current sector to be zero filled and written out to the
first available data location in the next sequential sector. It
should be noted that all calls to this function code will be
ignored unless at least one byte of data has either been written or
read from the current sector.

Function 16 ($10 hex) - Open System Information Record

On entry, only the drive number need be specified in the FCB; there
is no file name associated with this function. The FCB must not be
open for use by a file. This function accesses the System
Information Record for the diskette whose drive number is in the
FCB. There are no separate functions for reading or changing this
sector. All references to the data contained in the System
Information Record must be made by manipulating the Sector Buffer
directly. This function is used internally within FLEX; there
should be no need for a user-written program to change the System
Information Record. Doing so may result in the destruction of
data, necessitating the re-initialization of the diskette. There
is no need to close the FCB when finished.

Function 17 ($11 hex) - Get Random Byte From Sector

On entry, the file should be open for reading or update. Also, the
desired byte’ number should be stored in the Random Index byte of
the FCB. This byte number is relative to the beginning of the
sector buffer. On exit, the byte whose number is stored in the
Random Index is returned to the calling program in the A-register.
The Random Index should not be less than 4 since there is no user
data in the first four bytes of the sector.

Example:

To read the 54th data byte of the current sector
LDX #FCB Point to FCB
LDA #54+4 Set to item + 4
STA 35,X Put it in random index
LDA #17 Setup function code
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
Character is now in acc. A

FLEX Advanced Programmer’s Guide

-34-

Function 18 ($12 hex) - Put Random Byte in Sector

The file must be open for update. This function is similar to Get
Random Byte except the character in the A accumulator is written
into the sector at the data location specified by Random Index of
the FCB. The Random Index should not be less than 4 since only
system data resides in the first 4 bytes of the sector.

Example:

To write the 54th data byte of the current sector
LDX #FCB Point to FCB
LDA #54+4 Set to item + 4
STA 35,X Put it in random index
LDA #18 Setup function code
STA 0,X Store in FCB
LDA CHAR Get character to be written
JSR FMS Call FMS
BNE ERROR Check for errors
Character has been written

Function 19 ($13 hex) - Reserved for future system use

Function 20 ($14 hex) - Find Next Drive

This function is used to find the next online drive which is in the
"ready" state. Due to hardware limitations, the minifloppy version
of FLEX performs this command differently than the full size floppy
version. The functioning of the full size floppy version is as
follows. If the drive number in the FCB is hex FF, the search for
drives will start with drive 0. If the drive number is 0, 1, or 2,
the search will start with drive 1, 2 or 3 respectively. If a
ready drive is found, its drive number will be returned in the
drive number byte of the FCB and the carry bit will be cleared. If
no ready drive is found, the carry bit will be set and error #16
(Drives Not Ready) is set.

The minifloppy version functions as follows. If called with a
Drive Number in the FCB of hex FF, the function will return with 0
as the drive number in the FCB. If called with a 0, it will return
with the drive number set to 1. In both cases the carry is cleared
on return. If called with a drive number of 1 or higher, the drive
number is left unchanged, the carry bit is set on return and error
#16 (Drives Not Ready) is set.

FLEX Advanced Programmer’s Guide

-35-

Function 21 ($15 hex) - Position to Record N

This is one of the 2 function codes provided for random file
accessing by sector. The desired record number to be accessed
should be stored in the FCB location Current Record Number (a 16
bit binary value). The file must be open for read or update before
using this function code. The first data record of a file is
record number one. Positioning to record 0 will read in the first
sector of the File Sector Map. After a successful Position
operation, the first character read with a sequential read will be
the first data byte of the specified record. An attempt to
position to a nonexistent record will cause an error. For more
information on random files see the section titled ’Random Files’.

Example:

To position to record #6
LDX #FCB Point to FCB
LDA #6 Set position
STA 33,X Put in FCB
CLR 32,X Set M.S.B. to 0
LDA #21 Setup function code
STA 0,X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
Record ready to be read

Function 22 ($0A hex) - Backup One Record

This is also used for random file accessing. This function takes
the Current Record Number in the FCB and decrements it by one. A
Position to the new record is performed. This has the effect of
back spacing one full record. For example, if the Current Record
Number is 16 and the Backup One Record function is performed, the
file would be positioned to read the first byte of record #15. The
file must be open for read or update before this function may be
used. See ’Random Files’ section for details.

FLEX Advanced Programmer’s Guide

-36-

RANDOM FILES

FLEX version 9.0 supports random files. The random access technique
allows access by record number of a file and can reach any specified
sector in a file, no matter how large it is, in a maximum of two disk
reads. With a small calculation using the number of data bytes in a
sector (252), the user may also easily reach the Nth character of a file
using the same mechanism.

Not all files may be accessed in a random manner. It is necessary to
create the file as a random file. The default creation mode is
sequential and is what all of the standard FLEX Utilities work with.
The only random file in a standard FLEX system is the ERRORS.SYS file.
FLEX uses a random access technique when reporting error messages. A
file which has been created as a random access file may read either
randomly or sequentially. A sequential file may only be read
sequentially.

To create a random file, the normal procedure for opening a file for
write should be used. Immediately following a successful open, set the
File Sector Map location of the FCB to any non-zero value and proceed
with the file’s creation. It only makes sense to create text type files
in the random mode. As the file is built, the system creates a File
Sector Map. This File Sector Map (FSM) is a map or directory which
tells the system where each record (sector) of the file is located on
the disk. The FSM is always two sectors in length and is assigned
record number 0 in the file. This implies that a data file requiring 5
sectors for the data will actually be 7 sectors in length. The user has
no need for the FSM sectors and they are automatically skipped when
opening a file for read. The FMS uses them for the Position and Backup
function code operations.

The directory information of a file states whether or not a file is a
random file. If the File Sector Map byte is non-zero, the file is
random, otherwise it is sequential only. It should be noted that random
files can be Copied from one disk to another without losing its random
properties, but it can not be appended to another file.

FLEX Advanced Programmer’s Guide

-37-

FLEX ERROR NUMBERS

1 - ILLEGAL FMS FUNCTION CODE ENCOUNTERED
FMS was called with a function code in the Function Code byte of
the FCB that was too large or illegal.

2 - THE REQUESTED FILE IS IN USE
An Open for Read, Update, or Write function was issued on an FCB
that is already open.

3 - THE FILE SPECIFIED ALREADY EXISTS
a. An Open For Write was issued on an FCB containing the
specifiaction for a file already existing in the diskette
directory.
b. A Rename function was issued specifying a new name that was the
same as the name of a file already existing in the diskette
directory.

4 - THE SPECIFIED FILE COULD NOT BE FOUND
An Open for Read or Update, a Rename, or a Delete function was
requested on an FCB containing the file specification for a file
which does not exist in the diskette directory

5 - SYSTEM DIRECTORY ERROR - REBOOT SYSTEM
Reserved for future system use.

6 - THE SYSTEM DIRECTORY SPACE IS FULL
This error should never occur since the directory space is self
expanding, and can never be filled. Only disk space can be filled
(error #7).

7 - ALL AVAILABLE DISK SPACE HAS BEEN USED
All of the available space on the diskette has been used up by
files. If this error is returned by FMS, the last character sent to
be written to a file did not actually get written.

8 - READ PAST END OF FILE
A read operation on a file encountered an end-of-file. All of the
data in the file has been processed. This error will also be
returned when reading a directory whth the Get Information Record
function when the end of directory is reached.

9 - DISK FILE READ ERROR
A checksum error was encountered by the hardware in attempting to
read a sector. DOS has already attempted to re-read the failing
sector several times, without success, before reporting the error.
This error may also result from illegal track and sector addresses
being put in the FCB.

FLEX Advanced Programmer’s Guide

-38-

10 - DISK FILE WRITE ERROR
A checksum error was detected by the hardware in attempting to
write a sector. DOS has already tried several times, without
success, to re-write the failing sector before reporting the error.
This error may also result from illegal track and sector numbers
being put in the FCB. A write-error status may also be returned if
a read error was detected by DOS in attempting to update the
diskette directory

11 - THE FILE OR DISK IS WRITE PROTECTED
An attempt was made to write on a diskette which has been
write-protected by use of the write-enable cutout in the diskette
or to a file which has the write protect bit set.

12 - THE FILE IS PROTECTED - FILE NOT DELETED
The file attempted to be deleted has its delete protect bit set and
can not be deleted.

13 - ILLEGAL FILE CONTROL BLOCK SPECIFIED
An attempt was made to access an FCB from the open FCB chain, but
it was not in the chain.

14 - ILLEGAL DISK ADDRESS ENCOUNTERED
Reserved for future system use.

15 - AN ILLEGAL DRIVE NUMBER WAS SPECIFIED
Reserved for future system use.

16 - DRIVES NOT READY
The drive does not have a diskette in it or the door is open. This
message cannot be issued for mini floppys since there is no means
of detecting such a state

17 - THE FILE IS PROTECTED - ACCESS DENIED
Reserved for future system use.

18 - SYSTEM FILE STATUS ERROR
a. A read or Rewind was attempted on a file which was closed, or
open for write access.
b. A write was attempted on a file which was closed, or open for
read access.

19 - FMS DATA INDEX RANGE ERROR
The Get Random Byte from Sector function was issued with a Random
Byte number greater than 256.

20 - FMS INACTIVE - REBOOT SYSTEM
Reserved for future system use.

21 - ILLEGAL FILE SPECIFICATION
A format error was detected in a file name specification. The name
must begin with a letter and contain only letters, digits, hyphens,
and/or underscores. Similarly with file extensions. File names
are limited to 8 characters, extensions to 3.

FLEX Advanced Programmer’s Guide

-39-

22 - SYSTEM FILE CLOSE ERROR
Reserved for future system use.

23 - SECTOR MAP OVERFLOW - DISK TOO SEGMENTED
An attempt was made to create a very large random access file on a
disk which is very segmented. All record information could not fit
in the 2 sectors of the File Sector Map. Recreating the file on a
new diskette will solve the problem.

24 - NON-EXISTENT RECORD NUMBER SPECIFIED
A record number larger than the last record number of the file was
specified in a random position access.

25 - RECORD NUMBER MATCH ERROR - FILE DAMAGED
The record located by the FMS random search is not the correct
record. The file is probably damaged.

26 - COMMAND SYNTAX ERROR - RETYPE COMMAND
The command line just typed has a syntax error.

27 - THAT COMMAND IS NOT ALLOWED WHILE PRINTING
The command just entered is not allowed to operate while the system
printer spooler is activated.

28 - WRONG HARDWARE CONFIGURATION
This error usually implies insufficient memory installed in the
computer for a particular function or trying to use the printer
spooler without the hardware timer board installed.

FLEX Advanced Programmer’s Guide

-40-

DISK DRIVERS

The following information is for those users who wish to write their own
disk drivers to interface with some other disk configuration than is
supplied by the vendor. Technical Systems Consultants is not in a
position to write disk drivers for other configurations, nor do they
guarantee the proper functioning of FLEX with user-written drivers.

The disk drivers are the interface routines between FLEX and the
hardware driving the floppy disks themselves. The drivers released with
the FLEX System are designed to interface with the Western Digital 1771
or 1791 Floppy Disk Formatter/Controller chip.

The disk drivers are located in RAM at addresses $DE00 - $DFA0. All
disk functions are vectored jumps at the beginning of this area. The
disk drivers need not handle retries in case of errors; FLEX will call
them as needed. If an error is detected, the routines should exit with
the disk hardware status in the B-register and the CPU Z-Condition code
bit clear (issue a TST B before returning to accomplish this). FLEX
expects status responses as produced by the Western Digital 1771
Controller. These statuses must be simulated if some other controller
is used. All drivers should return with the X,Y and U registers
unchanged. All routines are enterd with a JSR instruction.

$DE00 - Read
Entry - (X) = FCB Sector Buffer Address
 (A) = Track Number
 (B) = Sector Number
The sector referenced by the track and sector numbers is to be read
into the Sector Buffer area of the indicated FCB.

$DE03 - Write
Entry - (X) = FCB Sector Buffer Address
 (A) = Track Number
 (B) = Sector Number
The content of the Sector Buffer area of the indicated FCB is to be
written to the sector referenced by the track and sector numbers.

$DE06 - Verify
Entry - (No parameters)
The sector just written is to be verified to determine if there are
CRC errors.

$DE09 - Restore
Entry - (X) = FCB Address
Exit - CC, NE, & B=$B if write protected
 CS, NE, & B=$F if no drive
A Restore Operation (also known as a Seek to Track 00) is so be
performed on the drive whose number is in the FCB.

FLEX Advanced Programmer’s Guide

-41-

$DE0C - Drive Select
Entry - (X) = FCB Address
The drive whose number is in the FCB is to be selected.

$DE0F - Check Drive Ready
Entry - (X) = FCB Address
Exit - NE & CS if drive not ready
 EQ & CC if drive ready
This routine is setup for FLEX systems where it is possible to
check the drive whose number is in the FCB for a ready status after
selecting that drive and delaying long enough for the drive motor
to come up to speed (approx. 2 seconds). This is not possible in
the minifloppy version due to hardware limitations. In this case,
this routine should not delay and should simply return a drive
ready status if the drive number in the FCB is 0 or 1 or a drive
not ready status for any other drive number.

$DE12 - Quick Check Drive Ready
This routine is the same as Drive Check Ready except the 2 second
delay is not done. This assumes the drive motor is already up to
speed. For minifloppy versions, there is no difference in the two
and this routine can simply be a jump to the Check Drive Ready
routine.

FLEX Advanced Programmer’s Guide

-42-

Diskette Initialization

The NEWDISK command is used to "initialize" a diskette for use by the
FLEX Operating System. The initialization process writes the necessary
track and sector addresses in the sectors of a "soft- sectored" diskette
such as is used by FLEX. In addition, the initialization process links
together all of the sectors on the diskette into a chain of available
sectors.

The first track on the diskette, track 0, is special. None of the
sectors on track 0 are available for data files, they are reserved for
use by the FLEX system. The first two sectors contain a "boot" program
which is loaded by the "D" command of the SBUG monitor or by whatever
comparable ROM based bootstrap is in use. The boot program, once
loaded, then loads FLEX from the diskette. Another sector on track 0 is
the System Information Record. This sector contains the track and
sector addresses of the beginning and ending sectors of the chain of
free sectors, those available for data files. The rest of track 0 is
used for the directory of file names.

After initialization, the free tracks on the diskette have a common
format. The first two bytes of each sector contain the track and sector
number of the next sector in the chain. The next two bytes are used to
store the logical record number of the sector in the file. The
remaining 252 bytes are zero. Initially, all record number bytes are
zero. When data is stored in a file, the two linkage bytes at the
beginning of each sector are modified to point to the next sector in the
file, not the next the free chain. The sectors in the diskette
directory on track 0 also have linkage bytes similar to those in the
in the free chain and data files.

A FLEX diskette is not initialized in the strict IBM standard format.
In the standard format, the sectors on the diskette should be physically
in the s order as they are logically, i.e. sector 2 should follow
sector 1, 3 follow 2, etc. On a FLEX diskette, the sectors are
interleaved so that there is t after having read one sector, to process
the data and request the next sector bef the sectors are physically
adjacent, the processing time must be very short. The interleaving of
the sectors allows more time for processing the data. The phenomena of
missing a sector because of long processin times is called "missing
revolutions", and results in very slow running time for programs. The
FLEX format reduces the number of missed revolutions, thus speeding up
programs.

FLEX Advanced Programmer’s Guide

-43-

DESCRIPTION OF A DIRECTORY SECTOR

Each sector in the directory portion of a FLEX diskette contains 10
directory entries. Each entry refers to one file on the diskette. In
each sector, the first four bytes contain the sector linkage information
and the next 12 bytes are not used. When reading information from the
directory using the FMS Get Information Record function, these 16 bytes
are skipped automatically as each sector is read; the user need not be
concerned with them.

Each entry in the directory contains the exact same information that is
stored in the FCB bytes 4-27. See the description of the File Control
Block (FCB) for more details.

A directory entry which has never been used has a zero in the first byte
of the file name. A directory entry which has benn deleted has the
leftmost bit of the name set (i.e. the first byte of the name is
negative).

DESCRIPTION OF A DATA SECTOR

Every sector on a FLEX diskette (except the two BOOT sectors) has the
following format:
 Bytes 0-1 Link to the next sector
 Bytes 2-3 File Logical Record Number
 Bytes 4-255 Data

If a file occupies more than one sector, the "link to the next sector"
portion contains the track and sector numbers, respectively, of the next
sector in the file. These bytes are zero in the last sector of a file,
indicating that no more data follows (an "end-of-file" condition). The
user should never manually change the linkage bytes of a sector. These
bytes are automatically managed by FMS. In fact, the user need not be
concerned at all with sector linkage information.

FLEX Advanced Programmer’s Guide

-44-

DESCRIPTION OF A BINARY FILE

A FLEX binary file may contain anything as data; all ASCII characters
are allowed. Each binary file is composed of one or more binary
records. There may be more than one binary record in a single sector.

A binary record looks as follows: (byte numbers are relative to the
start of the record, not the beginning of a sector)

Byte 0 Start of record indicator ($02, the ASCII STX)
Byte 1 Most significant byte of the load address
Byte 2 Least significant byte of the load address
Byte 3 Number of data bytes in the record
Byte 4-n The binary data in the record

The load address portion of a binary record contains the address where
the data resided when it was written to the file with the FLEX SAVE
command. When the file is loaded for execution or use, it will be put
in the same memory areas from which it was SAVED.

A binary file may also contain an optional transfer address record.
This record gives the address in memory of te entry point of a binary
program. The format of a transfer address is as follows:

Byte 0 Transfer Address Indicator ($16, ASCII ACK)
Byte 1 Most significant byte of the transfer address Byte 2 Least
significant byte of the transfer address

If a file contains more than one transfer address record (caused by
appending binary files which contain transfer addresses), the last one
encountered by the load process is the one that is used, the others are
ignored.

When reading or writing a binary file through the File Management System
from a user program, the calling program must process the record
indicator bytes and load addresses itself; FLEX does not supply or
process this information for the user.

FLEX Advanced Programmer’s Guide

-45-

DESCRIPTION OF A TEXT FILE

A text file (also called an "ASCII file" or "coded file") contains only
printable ASCII characters plus a few special-purpose control
charactres. There is no "load address" associated with a FLEX text file
as there is with FLEX binary files. It is the responsibility of the
program which is reading the text file to put the data where it belongs.

The only control character which FLEX recognizes and processes in a FLEX
text file are:

$0D (ASCII CR or RETURN)
This character is used to mark the end of a line or record in the
file.

$00 (ASCII NULL)
Ignored by FLEX; if encountered in the file, it is not returned to
the calling program.

$18 (ASCII CANCEL)
Ignored by FLEX; if encountered in the file, it is not returned to
the calling program.

$09 (ASCII HT or HORIZONTAL TAB)
This is a flag character which indicates that a string of spaces
has been removed space-saving measure. The next byte following the
flag character is a count of the number of spaces removed (2-127).
The calling program sees neither the flag character not the count
character. The proper number of spaces are returned to the user
program as successive characters are requested by the Read Next
Byte function. When writing a file, the spaces are automatically
deleted as the user program sends them to the File Management
System using the Write Next Byte function. The data compression
is, therefore, transparent to the calling program. (The above
discussion is only valid if the file is open for Text operations.
If open for Binary, the compression flag and count get passed
exactly as they appear in the file.

FLEX Advanced Programmer’s Guide

-46-

WRITING UTILITY COMMANDS

Utility commands are best prepared by the use of an assembler. FLEX
reserves a block of memory in which medium size utilities may be placed.
This memory start s at hex location $C100 and extends through location
$C6FF. The system FCB at location $C840 may also be used in user written
utilities for either FCB space or temporary storage. No actual code
should reside in this FCB space since it would interfere with the
loading of the utility (FLEX is using that FCB while loading utilities).

An example will be given to demonstrate some of the conventions and
techniques which should be used when writinq utilities. The example,
which can be found on the following paqes, is a simple text file listing
utility. Its syntax is:

LIST,[<SPEC>]

The default extension on the file spec is TXT. The utility will simply
display the contents of a text file on the terminal, line for line.

The following is a section by section description of the LIST utility.
The first section of the source listing is a set of EQUATES which tell
the assembler where the various DOS routines reside in memory. These
equates represent the addresses given in this manual for "User Callable
DOS System Routines".

The next two sections are also equates, the first to the FMS entry
points, and the second references the system FCB. The actual program
finally starts with the ORG statement. In this program, we will make
use of the Utility Command space located at $C100, therefore, the ORG is
to $C100.

One of the conventions which should be observed when writing DOS
utilities is to always start the program with a BRA instruction.
Following this instruction should be a ’VN FCB 1’ which defines the
version number of the utility. The 1 should of course be set to
whatever the actual version number is. In this example, the version
number is 1. This convention allows the FLEX VERSION Utility to
correctly identify the version number of a command.

Moving down the program to the label called ’LIST2’, the program needs
to retrieve the file specification and get it into the FCB. Pointing X
to the FCB, we can make use of the DOS resident subroutine called
’GETFIL’ to automatically parse the file spec, check for errors, and set
the name in the FCB correctly. If all goes well in GETFIL, the carry
should be clear, otherwise there were errors in the file spec and this
fact needs reported. If the carry is set, control is passed to the line
with the label ’LIST9’. At this point, the error message is reported
and control is returned to FLEX.

If the file spec was correct, and the carry was clear after the return
from GETFIL, we want to set a default file name extension of TXT. The
DOS subroutine named SETEXT will do exactly that. First it is necessary

FLEX Advanced Programmer’s Guide

-47-

to put the code for TXT in the A accumulator (the code is 1). X needs
to be pointing to the FCB which it still is. The ’1’ is also put in the
FCB for the future open operation. The call is made to SETEXT and the
file name is now correctly set up in the FCB. Note that no errors can
be generated by a call to SETEXT.

Now that we have the file spec, it is necessary to open the requested
file for read. X is still pointing to the FCB so it is not necessary to
reset. The FMS Function Code for ’open a file for read’ is 1 which was
previously put in the FCB location 0. A call to FMS is now made in an
attempt to open the file. Upon return, if the Z-condition code is set,
there were no errors. If there was an error, the ’BNE LIST9’ will take
us to the code to report the error. This section of code is the desired
way to handle most FMS caused disk errors. The first thing to do is
call the DOS routine RPTERR which will print the disk error message on
the monitor terminal. Next, all open disk files should be closed. This
can be easily accomplished by a call to the FMS close entry (FMSCLS).
Finally, return control back to DOS by jumping to the WARM START entry.
If the file opened successfully, control will be transfered to the line
with the label ’LIST4’. At this time it is desirable to fetch
characters one at a time from the file, printing them on the monitor
terminal as they are received. Since line feeds are not stored in text
files (carriage returns mark the end of lines, but the next line will
follow immediately), each carriage return received from the file is not
output as is, but instead a call to the DOS routine ’PCRLF’ is made to
print a carriage return and a line feed. As each character is received
from the file (by a call to FMS at label LIST4), the error status is
checked. If an error does occur, control is transferred to ’LIST6’.
Since FLEX does not store an End of File character with a file, the only
mechanism for determining the end of a file is by the End of File error
generated by FMS. At ’LIST6’, the error status is checked to see if it
is 8 (end of file status). If it is not an 8, control is transfered to
the error handling routine described above. If it is an End of File, we
are finished listing the file so it must now be closed. The FMS
Function Code for closing a file is 4. This is loaded into A and stored
in the FCB. Calling FMS will attempt to close the file. Upon return,
errors are checked, and if none found, control is transfered back to DOS
by the jump to ’WARMS’.
This example illustrates many of the methods used when writing
utilities. Many of the DOS and FMS routines were used. The basic idea
of file opening and closing were demonstrated, as well as file I/0. The
methods of dealing with various types of errors were also presented.
Studying this example until it is thoroughly understood will make
writing your own disk commands and disk oriented programs an easy task.

FLEX Advanced Programmer’s Guide

-48-

 *
 * SIMPLE TEXT FILE LIST UTILITY
 *

 * COPYRIGHT (C) 1979 BY
 *

 * TECHNICAL SYSTEMS CONSULTANTS, INC.

 * DOS EQUATES

 CD03 WARMS EQU $CD03 DOS WARMS START ENTRY
 CD2D GETFIL EQU $CD2D GET FILE SPECIFICATION
 CD18 PUTCHR EQU $CD18 PUT CHARACTER ROUTINE
 CD24 PCRLF EQU $CD24 PRINT CR & LF
 CD33 SETEXT EQU $CD33 SET DEFAULT NAME EXT
 CD3F RPTERR EQU $CD3F REPORT DISK ERROR

 * FMS EQUATES

 D406 FMS EQU $D406
 D403 FMSCLS EQU $D403

 * SYSTEM EQUATES
 C840 FCB EQU $C840 SYSTEM FCB

 * LIST UTILITY STARTS HERE

C100 ORG $C100

C100 20 01 LIST BRA LIST2 GET AROUND TEMPS

C102 01 VN FCB 1 VERSION NUMBER

C103 8E C840 LIST2 LDX #FCB POINT TO FCB
C106 BD CD2D JSR GETFIL GET FILE SPEC
C109 25 34 BCS LIST9 ANY ERRORS?
C10B 86 01 LDA #l SET UP CODE
C10D A7 84 STA 0,X SAVE FOR READ OPEN
C10F BD CD33 JSR SETEXT SET TXT EXTENSION
C112 BD D406 JSR FMS CALL FMS - DO OPEN
C115 26 28 BNE LIST9 CHECK FOR ERROR
Cl17 8E C840 LIST4 LDX #FCB POINT TO FCB
C11A BD D406 JSR FMS CALL FMS - GET CHAR
C11D 26 0E BNE LIST6 ERRORS?
C11F 81 0D CMPA #$D IS CHAR A CR?
C121 26 05 BNE LIST5
C123 BD CD24 JSR PCRLF OUTPUT CR & LF
C126 20 EF BRA LIST4 REPEAT
C128 BD CD18 LIST5 JSR PUTCHR OUTPUT THE CHARACTER
C12B 20 EA BRA LIST4 REPEAT SEQUENCE

FLEX Advanced Programmer’s Guide

-49-

C12D A6 01 LIST6 LDA 1,X GET ERROR STATUS
C12F 81 08 CMPA #8 IS IT EOF ERROR?
C131 26 0C BNE LIST9
C133 86 04 LDA #4 CLOSE FILE CODE
C135 A7 84 STA 0,X STORE IN FCB
C137 BD D406 JSR FMS CALL FMS - CLOSE FILE
C13A 26 03 BNE LIST9 ERRORS?
C13C 7E CD03 JMP WARMS RETURN TO FLEX

C13F BD CD3F LIST9 JSR RPTERR REPORT ERROR
C142 BD D403 JSR FMSCLS CLOSE ALL FILES
C145 7E CD03 JMP WARMS RETURN TO FLEX

 END LIST

FLEX Advanced Programmer’s Guide

-50-

THE DOS LINK UTILITY

The LINK Utility provided with FLEX is a special purpose command. Its
only function is to inform the "disk boot", which is on track 0, where
the program resides which is to be loaded during the boot operation.
Normally, LINK is used to set the pointer to the DOS program. Since DOS
may reside anywhere on the disk, LINK takes the starting disk address of
the file and stores it in a pointer in the boot sector. When the boot
program is later executed, it simply takes this disk address, and loads
the binary file which resides at that location. The load process is
terminated upon the receipt of a transfer address record. At this time,
control is transferred to the proqram just loaded by jumping to the
address specified in the transfer address record. If the ’linked’
program is ever moved on the disk, then it must be re-linked so the boot
knows the new disk address.

LINK may be used in some specialized applications. One is the
development of custom operating systems. The user may write his own
operating system, link it to the boot, and use it exactly as FLEX is
used now. It may also be desirable for special disks to boot in
specialized programs rather than the operating system. If this is done,
remember that unless the DOS is loaded during the boot process, there
will not be any disk drivers or File Management System resident in
memory.

FLEX Advanced Programmer’s Guide

-51-

FLEX Advanced Programmer’s Guide

-52-

PRINTER ROUTINES

There are two printer related programs provided with FLEX. One is the P
Utility, the other is the PRINT.SYS file which is the actual set of
printer drivers (initialize printer and output character). The P
command source listing is provided on the following pages and should be
self explanatory. Below you will find the requirements of the PRINT.SYS
file. No source listing is provided here since one is given in the
"FLEX User’s Manual".

’PRINT.SYS’ FILE REQUIREMENTS

The PRINT.SYS file needs to provide the system with three basic printer
routines, one for printer port initialization, one for printer status,
and one for output character to printer routine. The P routine and the
system printer spooler use these routines to communicate with the
printer. A source listing of the provided routines are included in the
"FLEX User’s Manual" and will not be duplicated here. The three
routines and their requirements are listed here.

PINIT ($CCCO-CCD7) This routine should initialize the printer port.
 No registers need be preserved.

PCHK ($CCD8-CCE3) This routine should check to see if the printer can
 accept another character. Return Negative CC status if can
 accept, Plus if cannot. Preserve A, B, X, Y, and U.

POUT ($CCE4-CCF7) This routine should output the character in A after
 calling PCHK to verify the printer can accept the character.
 Preserve B, X, Y, and U.

THE SYSTEM PRINTER SPOOLER

FLEX contains a printer spooler module. It requires the installation of
an interval timer board for operation. Essentially, the spooler is a
multi-tasking system, with the output to printer function being a low
priority task. An requested disk service will cause the printer task
to temporarily halt until the disk has been used. It should be noted
that the SW13 CPU vector is adjusted in this task scheduler. The PRINT
command is used to activate the spooler which in turn prints the files
(if any) in the print queue. Exact details of the spooling operation
are not available at this time.

FLEX Advanced Programmer’s Guide

-53-

 *
 * "P" UTILITY COMMAND
 *
 * THE P COMMAND INITIALIZES A PORT AND
 * CHANGES THE OUTCH JUMP VECTOR IN FLEX
 *

 * COPYRIGHT (C) 1979 BY
 *
 * TECHNICAL SYSTEMS CONSULTANTS, INC.

 * EQUATES

 C840 FCB EQU $C840
 CD30 LOAD EQU $CD30
 D406 FMS EQU $D406
 D403 FMSCLS EQU $D403
 CD06 RENTER EQU $CD06
 0004 NFER EQU $4
 CC09 PAUSE EQU $CC09
 CD1E PSTRNG EQU $CD1E
 CD3F RPTERR EQU $CD3F
 CD03 WARMS EQU $CD03
 CC11 LSTTRM EQU $CC11
 CC02 EOL EQU SCC02
 CCC0 PINIT EQU $CCC0
 CCE4 POUT EQU $CCE4
 C00F OUTCH EQU $CD0F
 CCFC PR1 EQU $CCFC

C100 ORG $C100

C100 20 01 P BRA P1 BRANCH AROUND TEMPS

C102 01 VN FCB 1 VERSION NUMBER

C103 B6 CCFC P1 LDA PR1 CHECK SYSTEM PROCESS REG
C106 27 09 BEQ P12 IS IT BUSY?
C108 8E C840 LDX #FCB POINT TO FCB
C10B C6 1B LDB #27 SET BUSY ERROR
C10D E7 01 STB 1,X STUFF IN FCB
C10F 20 45 BRA P3 GO REPORT ERROR
Clll B6 CC11 P12 LDA LSTTRM GET LAST TERMINATOR
C114 81 0D CMPA #$D IS IT A CR?
C116 27 47 BEQ P8
C118 Bl CC02 CMPA EOL IS IT EOL CHARACTER?
C11B 27 42 BEQ P8
C11D 7F CC09 CLR PAUSE DISABLE THE PAUSE FEATURE

 - continued -

FLEX Advanced Programmer’s Guide

-54-

C120 B6 CCE4 LDA POUT GET 1ST BYTE OF SPACE
C123 81 39 CMPA #$39 IS IT RTS?
C125 26 14 BNE P15 IF NOT - THEN LOADED
C127 8E C840 LDX #FCB POINT TO FCB
C12A 86 01 LDA #1 OPEN FILE FOR READ
C12C A7 84 STA 0,X
C12E BD D406 JSR FMS CALL FMS
C131 26 14 BNE P2 CHECK FOR ERRORS
C133 86 FF LDA #$FF SET FOR BINARY READ
C135 A7 88 3B STA 59,X SET COMPRESSION FLAG
C138 BD CD30 JSR LOAD CALL FLEX’S LOADER
C13B BD CCC0 P15 JSR PINIT GO INITIALIZE PORT
C13E 8E CCE4 LDX #POUT GET OUTPUT ADDRESS
C141 BF CD10 STX OUTCH+L STUFF IN FLEX
C144 7E CD06 JMP RENTER RETURN TO FLEX

C147 A6 01 P2 LDA 1,X GET ERROR CODE
C149 81 04 CMPA #NFER IS IT "NO SUCH FILE"?
C14B 26 09 BNE P3
C14D 30 8D 0014 LEAX NOPST,PCR POINT TO MESSAGE
C151 BD CD1E P25 JSR PSTRNG GO PRINT IT
C154 20 03 BRA P4

C156 BD CD3F P3 JSR RPTERR REPORT ERROR
C159 BD D403 P4 JSR FMSCLS CLOSE ALL FILES
C15C 7E CD03 JMP WARMS RETURN TO FLEX

C15F 30 8D 0018 P8 LEAX ERSTR,PCR POINT TO STRING
C163 20 EC BRA P25 GO PRINT IT

C165 22 50 52 49 NOPST FCC ’"PRINT.SYS" NOT FOUND’
C17A 04 FCB 4
C17B 22 50 22 20 ERSTR FCC ’"P" MUST BE FOLLOWED BY A COMMAND’
C19C 04 FCB 4

 * THE FOLLOWING CODE IS LOADED INTO
 * THE SYSTEM FCB WHEN THE P COMMAND IS
 * LOADED INTO MEMORY.
 * IT PRESETS THE FILE NAME IN THE FCB.

C843 ORG $C843
C843 FF FCB $FF
C844 50 52 49 4E FCC ’PRINT’
C849 00 00 00 FCB 0,0,0
C84C 53 59 53 FCC ’SYS’

 END P

FLEX Advanced Programmer’s Guide

-55-

FLEX Advanced Programmer’s Guide

-56-

INTERRUPTS IN FLEX

FLEX makes extensive use of interrupts during printer spooling. Anytime
there are files in the PRINT Queue (as a result of using the PRINT
command) the timer board (MP-T in I/O slot #4) is activated. This board
is initialized to output interrupts every 10 milliseconds. These are
IRQ type interrupts and FLEX sets the IRQ vector to point to its IRQ
routine. When the PRINT Queue is empty, the timer is shut off and no
interrupts are generated. The SWI3 instruction is also used quite
extensively in FLEX. The SWI3 vector in RAM is set by FLEX to point to
its SWI3 routine. Because of the SWI3 and IRQ use, the MON command will
not permit leaving FLEX while there is a file in the PRINT Queue.

All FLEX utilities, the Editor, the Assembler, the Text Processor, and
BASIC are interruptable programs. When writing your own programs, if
they are to be used while printing with the PRINT command (files in the
print queue), they should be written to be interruptable as well. At no
time should the IRQ or SW13 vectors be changed in a utility which is to
be run while printing. In general, good programming practice will yield
interruptable programs.

SYSTEM MEMORY MAP

The following memory map shows the location of user RAM and several
major sections of the FLEX operating system. All addresses are in
hexadecimal.

ADDRESS DESCRIPTION
0000 - BFFF User RAM (Some of the lower end of this area is used
 by certain utilities such as NEWDISK.)
C000 - C07F Stack Area (SP is initialized to C07F)
C080 - C0FF Input Buffer
C100 - C6FF Utility Command Area
C700 - C83F Scheduler & Printer Spooler
C840 - C97F System FCB
C980 - CBFF System Files Area
CC00 - D3FF DOS
D400 - DDFF FMS
DE00 - DFFF Disk Drivers

FLEX Advanced Programmer’s Guide

-57-

