

INTROL-C COMPILER

REFERENCE MANUAL

The contents of this manual have been carefully reviewed and are
believed to be entirely correct. However, Introl Corp. assumes no
responsibility for any inaccuracies.

The software described in this manual is proprietary and is
furnished under a license agreement from Introl Corp. The software
and supporting documentation may be used and/or copied only in
accordance with said license agreement.

INTROL-C is a registered trademark of Introl Corp.

Introl Corp.

647 W. Virginia St.
Milwaukee, WI 53204 USA

tel. (414) 276-2937

Copyright 1983 Introl Corp.

All Rights Reserved

Table of Contents

Introl-C Compiler Reference Manual

Table of Contents C.0.1

Introduction C.1.1

Getting Started C.2.1

Theory of Operation C.3.1

Compiler C.4.1

Assembler C.5.1

Definition of Introl-C C.6.1

Appendices C.A.1

C.O.1

C.O.2

INTRODUCTION

Introl-C provides a set of programs that have been designed to
facilitate the development of high-efficiency software, in C, for
microprocessor-based systems. It allows the programmer to take
advantage of all the convenience, power, and structure of the C
programming language, while producing executable programs whose
compact size and fast speed of execution rivals that of programs
written in assembly language.

The Introl-C software package includes a C Compiler, Relocating
Assembler, Linker, Loader, Library Manager, and Standard Library.

This Compiler Reference Manual describes the operation, use, and
features of the C Compiler and Relocating Assembler.

The operation and features of the Linker, Loader, and Library
Manager are described in the Linker Reference Manual.

The Standard Library Manual furnishes a detailed description of the
functions contained in the Standard Library.

Nowhere in any of these manuals do we profess to teach the C
programming language. It is assumed the user has access to the
definitive text, "The C Programming Language", Kernighan & Ritchie
(Prentice-Hall), or one of the several available C language
tutorials, for questions pertaining to the particulars of the C
language itself. The set of Introl-C Users Manuals are intended only
to describe Introl's implementation of the language.

C.1.1

C.1.2

GETTING STARTED

This section provides a brief overview Of the general procedures for
using Introl-C and is intended to help the user get off to a "fast
start" in running the Compiler and its related programs. For more
detailed operating information the reader is referred to subsequent
sections in this manual, as well as the other related user manuals
that may have been furnished with the Introl-C package. The
following comments assume that Introl-C has already been installed
on the user's system. (Refer to the Installation Instructions
accompanying the Introl-C distribution diskette for applicable
installation procedures.)

GENERAL

Introl-C is designed to enable the user to create an executable
output file from a C source file with a minimum of effort. Normally
it is only necessary for the user to enter a compilation/assembly
command line, and then enter a link/load command line.

In the simplest case, and assuming the C source program resides in a
single file called "sieve.c", for example, all that is necessary is
to enter the compiler command line:

icc sieve

and then enter the linker command line:

ilink sieve

The compiler command line entry will initiate execution of the
Compiler, which first compiles the file "sieve.c" to produce an
intermediate (and normally temporary) assembly language file, and
then automatically calls the Assembler, which assembles the
Compiler's assembly language output into a relocatable module named
"sieve.R" as the result. The linker command line, in turn, will call
the Linker, causing it to first link the relocatable file "sieve.R"
with any referenced functions from the Standard Library, and then
automatically execute the Loader, which loads the linked output into
an executable output file as the final result. The executable output
file will have the filename "sieve", possibly with a filename
extension appended, depending upon which specific Introl Loader is
being used (refer to Loader Appendices in the Linker Reference
Manual for details). When the Loader finishes, three
compilation-related files will typically exist: the original C
source file "sieve.c", the compiled and assembled relocatable module
"sieve.R", and the linked and loaded executable output file.

COMPILER COMMAND LINE

The compiler command line causes a C source file to be both compiled
and assembled to produce a relocatable module as the result.

The general form of the compiler command line is:

C.2.1

icc <filename> {<option>)

where <filename> is the name of the C source file which is to be
compiled and (<option>) represents zero or more option specifiers
for controlling the compilation and assembly processes. The input
filename is expected to have a filename extension; if none is
specified, the Compiler will assume the source file name has the
extension ".c". Unless the user explicitly assigns some other name
to the output file, the relocatable file produced after the
Assembler pass finishes will default to having the same name as the
C source input file, except with the filename extension ".R".

Compiler-related as well as Assembler-related options may be
specified on the compiler command line. Each of the available
options are described in detail in the Compiler Section of this
manual. Some of these option specifiers, and their general function,
are indicated below.

Compiler-specific option specifiers include:

-a[t|d|b|s]=<loc>
 Causes data of type "Text" or "Data" or "Bss" or "String",
 respectively, to be placed under the location counter indicated
 by the <loc> number.

-b=<directory>
 Identifies <directory> as being the place to find current and
 subsequent passes of the Compiler.

-C
 Overrides default condition with respect to generation of
 position independent code.

-d
 Overrides default condition with respect to generation of
 position independent data.

-g<C>
 Forces use of alternate "<c>" version pre-processor pass.

-i=<directory>
 Identifies <directory> as a place to search for #include files.

-k
 Causes console to display the name of each compilation pass as
 it is being executed.

-m<name>(=<string>)
 Defines <name> in preprocessor, with value <string> optionally
 assigned to <name>.

-r
 Retains the intermediate assembly language output file produced
 by the Compiler.

C.2.2

-S
 Causes "nested comments" to be disallowed.

-t=<directory>
 Places temporary files produced by this and subsequent passes
 of the Compiler in "directory" location.

-y[=<n>]
 Strips all identifiers to a maximum length of <n> characters.

-z
 Interprets "\n" (ie newline) characters as being carriage
 returns.

Assembler-specific options include:

-o=<filename>
 Assigns the name <filename> to Assembler's output object file.

-q=<class>
 Sets class specifier of Assembler's output module to the
 numeric value indicated by <class>.
-U
 Forces all undefined symbols to default to imported symbols.
-X
 Prevents an object file from being produced.

LINKER COMMAND LINE

Unless the user explicitly opts to inhibit loading, the linker
command line will cause an input module to be both linked and loaded
to produce an executable output file as the end result.

The general form of the linker command line is:

ilink <file> {<options>} <file> {<options>} ...

where each <file> entered represents the name of a file to be linked
and {<options>} represents zero or more option specifiers for
controlling the linking and loading processes. Each input file is
expected to have a filename extension; if none is specified, the
Linker will assume the input filename extension to be ".R".
Normally, the name of the executable output file will be the same as
the module which contains the "primary function name", but with a
filename extension determined by the particular Loader being used
(refer to the Linker Reference Manual for further discussion).

Each file that is input to the Linker is expected to be a
relocatable module. The Linker will NOT complain about producing an
output module which contains unresolved references; however,
attempts to subsequently load such a module will not be successful.

C.2.3

Both Linker and Loader options may normally be specified on the link
command line. These options are discussed in detail in the Linker
Reference Manual. Following are some of the link-time options that
are available:

-b
 Do not search Standard Library, "libc.R".

-c=<file>
 Find additional options and/or filenames in command, file named
 <file>.

-d[<c>]
 Use optional "<c>ld" Loader instead of the "standard" Loader.

-e=<symbol>
 Set entry point to <symbol>.

-f<string>
 Find additional library named "lib<string>.R" in the standard
 place for libraries.

-f=<string>
 Find additional library named "<string>.R" in the standard
 place for libraries.

-l[s][x][u][=<file>]
 Produce a linker listing with specified content.

-m=<symbol>
 Set the primary function name to be <symbol>.

-n
 Do not automatically call Loader.

-o=<file>
 Assign the name <file> to Linker's output file.

-P[<c>]
 Pipe Linker's output to Loader (if applicable for host
 operating system).

-s
 Strip output file of all non-entry defined symbols.

-t=<classlist>
 Link using <classlist> classes of module, if they are
 available.

-W
 make executable file no matter what! (ie even if unresolved
 references exist).

C.2.4

FILENAME CONVENTIONS

In general, the full legal filenames of any files which are input
to, or output, by, the Compiler, Assembler, Linker, and Loader are
always of the form:

<name><extension>

where <name> is the nominal "generic name" of the original source
file involved and <extension> is a filename extension, typically
consisting of a period (.) followed by one or more trailing
characters. When an input file is being specified on a command line,
however, it is normally sufficient to specify just the <name>
portion of the filename; the Introl-C program being called, whether
it be the Compiler, the Assembler, the Linker, or the Loader, will
automatically select the named file having an appropriate extension
(if such file exists) as described below.

Whereas the generic name associated with a given file serves to
generally identify that file as being derived from or related to
some C source program or function, the filename extension indicates
the specific nature of the contents of that particular file; ie
whether it is a file that contains the C source text itself, or a
file that contains the assembly language version of the source
program, or a file that contains a relocatable module version, or a
file that contains executable output, and so on.

Because of this convention of using a filename extension to identify
the specific nature of a file's contents, the Compiler, the
Assembler, the Linker, and the Loader are all designed to
automatically append a filename extension to the output files they
produce. In each case the "generic name" of the output file that
each of these component Introl-C programs produces usually remains
the same as that of the input file, but the extension appended to
the output is unique to the particular Introl-C compilation program
that generated the file. For example the Compiler normally appends
an extension of the form ".M<xx>" to the assembly language files it
produces, where the <xx> represents a 2-digit number as described
later in this section; the Assembler appends the extension ".R" to
the relocatable output files it produces; and the Linker appends the
extension ".RL" to the linked (but unloaded) relocatable output
files it produces. In the case of the Loader, the specific filename
extension (if any) appended to the output is determined by which of
the several Introl Loaders is being used to generate the executable
output file.

Similarly, the Compiler, the Assembler, the Linker, and the Loader
each expect their respective inputs to normally have a specific
filename extension (ie usually the extension that is appropriate to
the "type" of file format each of these programs expects to
process). In the case of the Compiler, input files are expected to
have the filename extension ".c", which is the extension normally
associated with files containing C source text. Input files to the
Assembler are normally expected to have an extension of the form

C.2.5

".M<XX>" (where <xx> represents a 2-digit number assigned by the
Compiler), which is the extension normally appended to assembly
language files that have been produced by the included compiler. The
Linker expects its inputs to have the extension ".R", which is the
extension the Assembler typically appends to the relocatable modules
it produces. The Loader expects its input files to have the
extension ".RL", which is the extension the Linker normally appends
to the relocatable and linked output files it produces.

Thus, unless some other filename extensions are explicity defined
for use on a command line, Introl-C will default to using input
files, and producing output files, having filename extensions as
follows:

 Introl-C Default Filename Extension
 Program Input Files Output File

 Compiler ".c" "M<xx>"

 Assembler ".M<xx>" ".R"

 Linker ".R" ".RL"

 Loader ".RL" (varies with
 Loader type)

*Note: The "xx>" designator in the ".M<xx>" extension represents a
2-digit number unique to the specific Introl-C compiler package that
is being used. For those Introl-C compiler packages that target the
6809 processor, the specific default extension is ".M09"; for
versions that target the 6801 and similar processors, the extension
is ".M01"; for versions that target the 6805, the extension is
".M05"; for versions that target the 68000, the extension is ".M68";
for versions that target the NS16000, the extension is "M16"; for
versions that target the 8086, the extension is ".M86".

Also, as indicated in the above table, the output filename extension
that is assigned to the executable output file will be dependent
upon which of the several available Introl Loaders is being used.
The reader is referred to the Loader Appendices of the Linker
Reference Manual for further information pertaining to Loader output
filenames.

ASSEMBLER COMMAND LINE

Normally the Assembler is invoked by the Compiler automatically as
part of any compilation/assembly process. However, the Assembler may
also be called independently by the user for assembling user-written
assembly language programs.

The general form of the assembler command line is:

r<xx> <filename> {<option>}

C.2.6

where "r<xx>" represents the Introl filename of the applicable
Assembler furnished with the Introl-C package, <filename> is the
name of the assembly language file which is to be assembled, and
{<option>) represents zero or more assembler option specifiers.

The "<xx>" in the "r<xx>" filename of the Assembler is a 2-digit
number unique to the specific Introl-C package being used. The
Introl-C package that targets the 6809 processor has the specific
Assembler filename "rO9"; the version that targets the 6801 and
similar processors has the Assembler filename "r0l"; the version
that targets the 6805 has the Assembler.filename "r05"; the version
that targets the 68000 has the Assembler filename "r68"; the version
that targets the NS16000 has the Assembler filename "rl6"; the
version that targets the 8086 has the Assembler filename "r86".

The assembly language input file is expected to have a filename
extension; if none is explicitly specified, the input filename
extension will default to the ".M<xx>" extension that the included
Compiler normally appends to its own output files. (ie ".M09",
".M05", etc, as applicable). The relocatable output file created by
the Assembler will nominally have the same name as the input file,
but with the filename extension ".R".

LOADER COMMAND LINE

Normally the Loader is called automatically by the Linker as a
result of a linker command line call. However, the Loader may also
be executed independently by the user via a loader command line of
the general form:

<c>ld <filename> {<option>}

where the <c> represents the first letter of the Introl filename of
the Loader which is to be called (several types of compatible
Loaders are optionally available and potentially usable with
Introl-C), <filename> is the filename of the relocatable file which
is to be loaded, and (option) represents zero or more option
specifiers. The relocatable input module is normally expected to
contain no unresolved references. The input file is expected to have
a filename extension; if none is explicitly specified, a ".RL"
filename extension is assumed. The user is referred to the Loader
Appendices of the Linker Reference Manual to determine the "<c>ld"
name(s) of the specific Loader(s) that may be legally accessed, the
applicable options available for each such Loader, and the unique
filename extension (if any) assigned to the executable output file
produced by each Loader type.

C.2.7

C.2.8

THEORY OF OPERATION

The creation of an executable file from a C source file can be
considered to occur in four distinct phases: a compilation phase,
followed by an assembly phase, followed by a linking phase, followed
by a loading phase. Under Introl-C, however, the assembly phase is
always initiated automatically when the compilation phase
terminates, and the loading phase is initiated automatically when
the linking phase terminates. Thus, it will normally appear to the
Introl-C user as though only two phases are actually involved: a
compilation/assembly phase (which is initiated via a single compiler
command line call), and a linking/loading phase (which is initiated
via a single linker command line call).

COMPILATION PHASE

The compilation phase, per se, is performed by the Compiler and
translates a C source text file into an assembly language text file
which is suitable for input to the Assembler.

The Compiler converts a C source file into assembly language by
seqentially executing four separate compilation programs, or
"passes", which are called passes "cO", "c1", "c2", and "c3",
respectively. (Note: The "cO" pass is alternatively called the "icc"
pass for some operating system versions of Introl-C.) Each of these
passes performs a unique function in the overall compilation process
and, as each pass finishes, it automatically initiates the next pass
in the sequence.

The basic function of the c0 pass, also known as the
"preprocessor", is to preprocess the C input text, removing
comments and other white space from the C-source text and executing
any preprocessor directives, ultimately transforming the original C
input into a series of tokens that can be more easily manipulated
and analyzed. If illegal characters appear in the C source text, or
preprocessor directives have been used improperly, the c0 pass will
detect these and flag them as errors. The cl pass, also called the
"parser", converts the output of the cO pass into two resultant
files: a triple file, which is a tree representaion of the original
program, and a symbol file. The cl pass also checks the program for
semantical and grammatical accuracy and is responsible for detecting
and reporting any errors of this type. The function of the c2 pass,
also called the "optimizer", is to optimize the triple file
generated by cl to reduce the size and increase the execution speed
of the final program. The c3 pass, called the "code generator", uses
the optimized triple file produced by c2, together with the symbol
table produced by cl, to produce an assembly language output file
for the target processor. The several Compiler passes transfer
information between one another via temporary files, which are
normally automatically deleted once their contents are no longer
needed by the Compiler.

The final result of the 4-pass compilation phase, therefore, is the
creation of an assembly language text file which is suitable input

C.3.1

for the Introl Assembler. Just before the last Compiler pass (c3)
terminates, it automatically calls the Assembler.

ASSEMBLY PHASE

The function of the assembly phase is to translate the assembly
language text file that is produced by the c3 pass of the Compiler
into a relocatable object file which is suitable input for the
Linker (or, if no linking is required, for possible input directly
to the Loader). The assembly phase, performed by the Assembler
program, is initiated automatically when the c3 Compiler pass
finishes.

During the assembly phase, the Assembler converts the assembly
language file produced by the compilation phase into a "relocatable"
output file that contains a single relocatable module. The
Assembler's output is "relocatable" from the standpoint that all
address references made within the module are independent of the
module's final absolute address location in memory. It is the
function of the Loader to determine the final location of the module
in memory and, thus, the absolute location of addresses. Therefore,
until the Assembler's output module has been processed by the
Loader, the output module generated by the Assembler is
"relocatable" because the actual position of the module in memory is
still subject to change.

Although the Assembler is capable of generating error messages, it
should remain silent if the input file is the result of a
compilation since the Compiler itself should in no case produce a
syntactically incorrect assembly language file.

When the Compiler calls the Assembler, it normally specifies an
option to the Assembler which causes the Compiler's assembly
language output file to be deleted after the Assembler has finished
using it. Thus, only the relocatable object file generated by the
Assembler normally remains as the final result for the typical
compilation/assembly process.

LINKING PHASE

The function of the Linker is to resolve external references in a
relocatable module. It does this by joining the module to other
relocatable modules which satisfy those external references. The
result of the linking process is always a single resultant
relocatable module which, if all external references have been
satisfied, is suitable input for the Loader. Since the Linker
normally calls the Loader automatically, it usually appears as if
the Linker both links and loads the input to produce an executable
file as the end result.

Whenever a program module references a label which is not defined in
that same module, it is said to have an "external reference". All
such external references must be "resolved" before the module can be
loaded to produce an executable module. Although it is possible to

C.3.2

create a program module that makes no external references, it is
more common that a module will reference many labels which are not
defined in its text; this is certainly the case with modules
produced as a result of compiling and assembling a C source file.
The Linker "resolves" such external references by first locating
other modules which define the unresolved labels, and then linking
these modules with the original module to produce a larger single
relocatable module that includes the necessary label definitions.
The Linker attempts to resolve as many external references as it
possibly can, terminating when it either has resolved all the
external references that are made or, alternatively, when it runs
out of places to look for definitions which will satisfy any
remaining unresolved references. When the Linker determines it has
resolved all the references it possibly can, it will normally
automatically call the Loader. The Linker will not complain if some
unresolved references still exist in its linked output; however,
attempts to load such modules will not be successful.

Inputs to the Linker must be relocatable modules, such as those
produced by the Assembler, or as produced by the Linker itself (ie
modules previously produced by executing the Linker alone, with the
Loader pass inhibited). Normally the Standard Library is always
searched by the Linker in its attempt to resolve necessary
references.

LOADING PHASE

During the loading phase, the Loader fixes absolutes addresses for
relocated values within a relocatable module, thereby converting a
relocatable module into an "executable" output file. The exact
format of the "executable" output file that is produced during the
loading phase is determined by which of several optionally available
Introl Loaders is being used. Depending on Loader type used, the
output file may be executable under the host operating systems or
executable under some other target operating system, or it may be a
file of load records in one of several hex formats. (See the Loader
Appendices of the Linker Reference Manual for further information.)

Normally, unless optionally overridden by the user, the 'standard'
Loader included in the Introl-C package is automatically called by
the Linker when the Linker terminates. For resident Introl-C
compilers, the "standard" Loader is one which produces an output
that is executable on the host system. For Introl-C Cross-Compiler
packages, the "standard" Loader is one that produces an output file
of hex load records.

The Loader expects its input to be a single relocatable module which
has no unresolved external references. Normally (unless optionally
overridden by the user) the Loader will complain about unresolved
external references in its input and loading of such modules will
not be successful.

 C.3.3

C.3.4

 COMPILER

The function of the Compiler is to translate a C source file into an
assembly language text file which is suitable input for the Introl
Assembler. In normal operation the Compiler always calls the
Assembler when the it finishes. Therefore, invoking the Compiler
will typically result in a fully compiled, fully assembled
relocatable output module being produced.

The result of a successful compilation will be the creation of a
relocatable object module which will have the same file name as the
original C source input file, but with the filename extension ".R".
An intermediate assembly language file is produced by the Compiler
which is used as the input to the Assembler. However, this
intermediate assembly language file is normally automatically
deleted when the Assembler finishes using it. If the user wishes to
retain the Compiler's assembly language output, a Compiler option
for doing so (the "-r" option) is provided. When the "-r" option is
specified, the assembly language output will be saved in a file
having the same name as the C source input file, but with a filename
extension of the form ".M<xx>", where <xx> represents a 2-digit
number as described below.

COMPILER COMMAND LINE

A complete 4-pass compilation and assembly is initiated using a
compiler command line of the following form:

icc <filename> {<option>}

where <filename> is the name of the C source file which is to be
compiled and {<option>} is zero or more Compiler and/or Assembler
option specifiers. (Remember the Compiler automatically calls the
Assembler when it finishes.) If no filename extension is specified
for the input file, the filename extension ".c" is assumed.

The result of a successful compilation and assembly will be a
relocatable object module, normally having the same filename as the
input file, but with the filename extension ".R" (assigned by the
Assembler). The "-r" option must be specified (see Compiler Options,
below) if the user wishes the Compiler's assembly language output
file to be retained; this assembly language file will otherwise
automatically be deleted when the Assembler finishes using it. The
Compiler's assembly language output file, if saved, will have
the same filename as the original input file, but with a filename
extension of the form ".M<xx>", where the <xx> represents a 2-digit
number. For Introl-C Compilers that target the 6809 processor, this
extension will be ".M09"; for Compilers that target the 6801 and
similar processors, the extension will be ".M01"; for 6805 targets,
".M05"; for 68000 targets,".M68"; for NS16000 targets, ".M16"; for
8086 targets, ".M86".

It should be noted that the Compiler pre-pends an underscore ("_")
at the beginning of each symbol it generates. Thus, although a

C.4.1

keyword such as "main", for example, is not preceded by any
underscore at the C programming level, it will have a pre-pended
underscore whenever it appears in any output files generated by the
Compiler. Accordingly, the Assembler and Linker expect all C symbols
in their inputs to begin with an underscore. Because of this, when
the user is writing assembly language programs for direct input to
the Assembler, or explicitly defining a "program naming function"
symbol or an "entry point" symbol at link time, any C language
symbols or C functions that are used must similarly always begin
with a leading underscore character (even though these symbols or
functions, at the C program level, do not have a leading underscore
in their names).

COMPILER COMMAND LINE OPTIONS
As indicated above, option specifiers for altering the operation of
the Compiler, and also the Assembler, may be specified on the
compiler command line. Any such option specifiers should always
appear after the input file named on the command line. Option
specifiers are indicated by a dash, "-", followed by an alphabetic
character, perhaps followed by an equals sign and parameter. The
alphabetic character indicates which option is desired and the
parameter is dependent on the option. Option specifiers which are
not pertinent to the Compiler itself are automatically passed on to
the Assembler when it is subsequently called by the Compiler. The
various options available for use are described below, grouped
according to whether they apply specifically to the Compiler, per
se, or whether they apply specifically to the Assembler pass.

Compiler-specific options include:

-a[t|d|b|s]=<loc>
 where [t|d|b|s] indicates a single letter ("t" or "d" or"b" or
 "s") and <loc> is an unsigned number between 0 and 15. This
 option will force the Compiler to place generated output of a
 specified type under any one of 16 available location counters,
 which counters are numbered from zero through 15. Data type is
 specified by the letter entry; "t" for text; "d" for data; "b"
 for bss; and "s" for strings. The <loc> entry specifies the
 location counter number. Thus the option specification "-ad=5"
 will cause all initialized data to be placed under location
 counter 5 (rather than its default counter of 1). The default
 location counter for code (text) is zero (0); the default for
 data is location counter one (1); the default for strings is
 location counter two (2); and the default for uninitialized
 data (bss) is location counter three (3).

-b=<directory>
 This option is used to specify that <directory> is the place in
 which this, and subsequent passes, can expect to find
 subsequent passes of the Compiler. This directive may be
 applied to any pass of the Compiler and is in force during
 subsequent passes.

C.4.2

-c
 This option changes the Compiler's default condition with
 respect to the "position dependency" of generated code, as
 follows. If Introl-C is being run on a host operating system
 which does not permit position dependent code to be executed,
 the compiler will default to generating only position
 independent code. In such case, this option will override this
 default condition and force the Compiler to instead generate
 position dependent code. If Introl-C is instead being run on a
 host operating system that does permit position dependent code
 to be executed, the Compiler will default to generating
 position dependent code. In such case, this option will
 override this default condition and force the Compiler to
 instead generate position independent code. Position
 independent code is code in which no absolute references are
 permitted; all jumps are relative to the program counter and
 thus are not dependent on the final location of the code in
 memory. This option is useful primarily for users who wish to
 generate code for a target machine other than the host. This
 option is used only by the c3 (code generating) pass of the
 Compiler; it may, however, be specified in the initial call to
 the first pass of the Compiler.

-d
 This option changes the Compiler's default condition with
 respect to the "position dependency" of generated data, as
 follows. If Introl-C is being used on a host operating system
 that does not permit programs with position dependent data to
 be executed, the Compiler will default to generating only
 position independent data. In such case, this option overrides
 this default condition and forces the Compiler to instead
 generate position dependent data. If Introl-C is instead being
 run on a host operating system which does permit programs with
 position dependent data to be executed, the Compiler will
 default to generating position dependent data. In such case,
 this option overrides this default condition and forces the
 Compiler to instead generate only position independent data.
 Position independent data is data that must be referenced
 through a register. The actual position of position independent
 data is not known until the necessary registers are set, just
 prior to execution of the main program. This option is useful
 primarily for users who wish to generate code for a target
 machine other than the host. Although this option is used only
 by the c3 (code generating) pass of the Compiler, it may be
 specified in the initial call to the first pass.

-g<c>
 This option specifies that an optional parser pass, named
 "cl<c>", be used (if such optional "cl<c>" pass exists) for the
 compilation process in lieu of the "standard" cl parsing pass.
 Depending upon the specific host operating system for which it
 has been supplied, some versions of the Introl-C Compiler may
 include the "standard" cl pass program as well as one or more
 optional" variations of the cl pass. The "standard" cl pass

C.4.3

 supports all features of the C language described in the
 "Definition Of Introl-C" section of this manual. The "optional"
 parser(s) provided, if any, typically omit support for one or
 more features of the C language and are usually intended to
 permit the user to circumvent memory limitations that might
 otherwise prevent compilation of large programs under certain
 host operating systems. If any optional parsers have been
 supplied for use for your particular host configuration, such
 parsers will be described in the Appendices of this manual. The
 option, of course, should only be specified if optional
 "cl<c>" parser programs have, in fact, been furnished with your
 Compiler.

-i=<directory>
 This option specifies that <directory> is the place to search
 for files specified via a #include preprocessor directive if
 the specified file cannot be found in the default locations.
 This option may be specified up to 9 times so that up to 9
 different places may be searched when the preprocessor is
 looking for an include file. If the Compiler passes are being
 run individually, this option is legal only for the c0 pass.

-k
 This option causes the name of each compilation pass (including
 the assembly pass) to be displayed on the console as that pass
 is being executed. This is useful for permitting the user to
 monitor the progress of a compilation sequence when Introl-C is
 being run under a relatively "slow" host operating system.

-m<name>{=<string>}
 This option has the effect of permitting a #define
 preprocessor directive to be specified on the command line.
 The -m option "defines" the identifier given by <name> to the
 preprocessor and assigns the value given by the optional
 <string> to this identifier.

-n
 This option prevents the next compilation pass from being
 loaded when the current pass terminates.

-r
 This option specifies that the assembly language source file
 produced by the Compiler (which will have a filename extension
 of the form ".M<xx>") should be retained. This assembly
 language file output by the Compiler is otherwise automatically
 deleted when the Assembler has finished using it.

-s
 This option instructs the Compiler to disallow nested comments.
 That is, a slash-star combination appearing within a comment
 will not be interpreted as the start of a nested comment when
 this option is specified. This option should not be confused
 with the "-s=<size>" option described below, which is intended
 to provide a completely different effect.

C.4.4

-s=<size>
 When the c2 (optimizer) pass of the Compiler is being executed
 separately, this option may be used to set the maximum size of
 the triple buffer. The buffer size will be set to the value
 indicated by <size>, which must be an integer number. Normally
 the size of the triple buffer is not of concern to the
 programmer and is otherwise automatically set by the cl pass to
 produce an efficient buffer size. The "-s=<size>" option should
 be used only when the c2 pass is being independently executed;
 if used under any other condition, the Compiler will otherwise
 interpret it as being the "-s" option,, described previously,
 which disallows nesting of comments.

-t=<directory>
 This option specifies that <directory> is the place in which
 this and subsequent passes of the Compiler are to place and
 find their temporary files.

-Y[=<n>]
 This option forces the Compiler to strip all of its identifiers
 to a maximum length of <n> characters, where <n> is a positive
 integer less than or equal to 90. If this option is not used,
 the Compiler will default to permitting identifiers to be up to
 90 characters long. The "=<n>" entry is optional and, if not
 used, will cause the maximum length to be automatically set at
 8 characters (ie the specification "-y" will strip all
 identifiers to a maximum length of 8 characters, just as would
 occur for the specification "-y=8").

-z
 This option causes all "\n" (newline) character constants to be
 interpreted as being carriage returns. This option is included
 because the definition of the "\n" character is ambigious on
 some operating systems. A "\n" is defined by the C language to
 represent both a newline and a linefeed. This works only if the
 operating system in use defines its newline character to be a
 linefeed. Unfortunately some operating systems use the carriage
 return to indicate a newline. Thus, from the Compiler's point
 of view, it is not always clear whether a linefeed or a newline
 is intended by the user when a \n character is encountered.
 This option is provided primarily for those users having
 trouble with the distinction when transporting source code from
 one type of system to another.

The following Assembler-specific options may be specified on the
compiler command line:

-o=<filename>
 This option allows the user to explicitly name the Assembler's
 output file, assigning the name indicated by <filename> to this
 output file. For example, the specification "-o=file" would
 assign the name "file.R" to the relocatable module produced by
 the Assembler. If the -o option is not specified, the object

C.4.5

 file is given the same name as the input file, except with the
 filename extension ".R". Unless the <filename> explicitly
 defines some other filename extension, the extension ".R" will
 automatically be appended by the Assembler.

-q=<class>
 This option is used to assign a numeric class specifier to the
 relocatable module produced by the compiler. The class
 specifier assigned is determined by the <class> entry, which
 can be any number from zero through 255. If this option is not
 specified, the relocatable output module produced by the
 Assembler will be assigned the default class number of zero
 ("0"). A module's class number becomes significant when
 multiple modules exist which have identical "filenames"; in
 such instances, use of a different class number for each such
 module permits any given module to be uniquely identifiable.

-u
 This option forces all undefined symbols to default to imported
 symbols. When this option is not specified, any symbol which is
 not imported and also not defined within the file will generate
 an error message.

 -X
 This option prevents an object file from being produced.

C.4.6

COMPILER ERROR MESSAGES

Compiler error messages typically occur because of one of three
basic types of "errors" being encountered during compilation. The
most common cause of an error message is that a syntax error of some
type has been detected in the C source input file. A second type of
error is when the Compiler cannot, for some reason, perform its
compilation; for example, if the disk becomes full while the
Compiler is attempting to write out one of its many temporary files.
The third type of error is one in which the Compiler fails to
operate due to an internal bug. This last type of error should, of
course, never occur but a realist should not be totally unprepared
for such a possibility.

Program error messages have the form:

file: <name> error at line <line> <message>

where <name> is the name of the file involved, <line> is the line
number in that file at which an error became apparent to the
Compiler, and <message> is a note from the Compiler which indicates
what the Compiler found unacceptable. Notice that the line number
given is the line in which a syntax error of some type first became
evident to the Compiler. This may or may not be the actual line in
the file where the program first began deviating from what the
programmer may have had in mind when he was writing it. There is
really no way for the Compiler to guess what the "real" error in a
program may be; the Compiler can only complain at the point where
the program text subsequently becomes syntactically incorrect. This
may be many lines after the line which contains the actual
programming error. Similarly, the message which the Compiler prints
out indicates what the Compiler sees the problem to be; this may or
may not be the problem as the programmer sees it.

The following are some explanations of the less obvious error
messages produced by the Compiler.

'while' expected
 The Compiler expected a "while" to follow a "do" but instead
 found something else.

arithmetic type required
 The Compiler expected an expression which evaluated to an
 arithmetic type, but instead found something else such as a
 structure or union.

bad &
 The ampersand operator was used on something which was not an
 lvalue.

bad break
 A break was encountered which was not in either a "do",
 "while", or "for" loop, or in a "switch" statement.

C.4.7

bad case
 A case label statement was encountered which was either outside
 of a switch statement or was already defined.

bad cast
 The Compiler couldn't force the desired cast. This happens when
 one attempts to cast an integer as a structure, for example.

bad continue
 A continue statement was encountered which was not in either a
 "for", "do", or "while" loop.

bad default
 A default was encountered outside of a switch statement or else
 more than one default was specified for a given switch
 statement.

cannot create output file
 The Compiler was unable to create the output file. This is
 usually because the disk is full.

cannot open #include file
 The Compiler was unable to open the specified #include file.
 This is often because the user does not have permission to read
 the file.

compiler bug
 You should never see this error. It indicates an internal error
 in the second pass of the compiler.

declaration of parameter not in parameter list
 Indicates that a variable was declared in a function header
 which was not part of the parameter list for that function.

expression stack overflow, aborting
 The Compiler's internal stack (on which it evaluates
 expressions) has overflowed. This can be remedied by breaking
 up the offending expression into smaller expressions which can
 be evaluated separately.

function required
 This indicates that some expression which is not of type
 function is being used where a function is required.

illegal #else
 An #else was encountered outside of an #ifdef or #ifndef block.

illegal #undef
 This usually means that there was no identifier following the
 #undef keyword.

illegal array reference
 An attempt was made to reference an array in an illegal
 fashion.

C.4.8

illegal character
 An illegal character was encountered in the input file. This is
 usually due to a preprocessor directive which does not begin
 in column 1 but may also be caused by a missing open quote or
 open comment. Most control characters are considered illegal.

illegal return type
 The return type of a function was not of simple type. No
 structures or unions may be returned as function values
 (although pointers to them may be returned).

label used but not defined in function
 A label was used on a goto but was never defined. Labels are
 always local to the function in which they are defined.

lvalue required
 This means that the Compiler expected an expression which could
 be used to represent a changeable value but did not find one.
 An lvalue is a value which represents a changeable value. For
 example if the variable XX is defined as an integer then it may
 be used (almost) anywhere an integer constant can be used. But
 it may also be used in places where it is illegal to use a
 constant, like on the left hand side of an assignment operator.
 Thus XX is an lvalue whereas a constant is not.

missing "'" or character constant too long
 This indicates that more than one character was found in a
 quote constant. Either the terminating "'" is missing or there
 is more than one character between the starting "'" and the
 terminating "'". Cnntrol characters which begin with a
 backslash are considered to be a single character.

missing member name
 A reference to a member name was made which was not declared to
 be a member of the original structure.

multiple symbol definition
 Indicates that the symbol following the dash has been defined
 more than once.

no matching #if for #endif
 An #endif was encountered but no #ifdef or #ifndef preceded it.

pointer type required
 This indicates that an operation was attemoted on an expression
 which should be (but is not) of pointer type.

preprocessor bug #l
 You should never see this one. It indicates that there is an
 internal error in the first pass of the compiler.

string improperly terminated: unexpected EOF
 This usually means a missing close quote.

C.4.9

string too long, truncated at right
 This indicates that a string exceeded the maximum string
 constant length (the current limit is 256 characters, including
 the terminating NULL).

struct/union tag used but not defined in block
 A structure or union tag was used but not defined in the
 current program file, function, or block.

structure/union size unknown
 This message is generated when the size of a structure or union
 is required (as in the sizeof operator) but is not known
 because the struct or union definition has not yet been
 encountered.

too many #define parameters
 Too many parameters in a #define directive. The current limit
 is approximately 25.

too many nested #ifs
 Too many nested #ifdef or #ifndef directives. This includes
 those due to #include files. The current limit is approximately
 15.

unbalanced comment
 This indicates that the End Of File was encountered before a
 comment was completed. Remember: Introl-C allows nesting of
 comments. Each /* must have its own */ to terminate it.

undeclared identifier, assuming auto int
 An identifier was encountered which has not been defined. The
 Compiler will assume it was declared as an automatic integer.
 Notice that this assumption may cause the Compiler to generate
 additional error messages if the identifier is used in a
 fashion which is not permitted for an auto int.

unexpected end of file, unbalanced #if, #ifdef, or #ifndef
 The End Of File was encountered before an #ifdef or #ifndef was
 completed by an #endif directive.

unexpected end of file
 The End of File was encountered while the Compiler was still
 trying to complete some construct. For example, if the Compiler
 has not yet encountered the closing brace of a function
 definition and encounters the EOF, it will print this message.

unmatched paren or quote in macro call ... end of file
 The End Of File was encountered while the Compiler was
 searching for an expected close quote or a right paren.

unrecognizable preprocessor directive
 This indicates that a # in column 1 was followed by an unknown
 directive. Check the spelling of the directive.

C.4.10

warning - undefined operator on pointer type
 This indicates that an operation was attempted involving a
 pointer which is not permitted on operands of type pointer.

warning - expression with no effect, ignored
 This indicates that the ComDiler has found an expression with
 no effect. That is, no variable is updated as a result of the
 expression. No code is generated for the expression.

warning - union or struct as function parameter, '&' added
 This indicates that an attempt was made to pass an expression
 of type struct or union as a function parameter. Currently this
 is disallowed by the Compiler. The Compiler will insert an
 ampersand so that a pointer to the structure will be passed
 instead.

C.4.11

C.4.12

 ASSEMBLER

The Assembler furnished with Introl-C is a relocating assembler
designed to translate an assembly language text file, as produced by
the Introl Compiler, into a relocatable object file. This object
file may then be linked, if need be, to other relocatable object
files and loaded to produce a file which is in executable format.

In normal usage, the Compiler always automatically calls the
Assembler when the Compiler, per se, finishes. The Assembler, in
turn, then assembles the output generated by the Compiler to produce
a relocatable object module as the final result of a compilation.
The relocatable module that is produced by the Assembler will
typically have the same filename as the original input, file, but
with the filename extension ".R" appended.

When the Compiler automatically calls the Assembler, the Compiler
passes 3 Assembler option specifiers to the Assembler; specifically,
the "-n", the "-s", and the "-z" Assembler options are passed. The
"-n" and "-s" option specifiers prevent the Assembler from
generating any type of assembly output listing and symbol table
listing, respectively; the "-z" specifier causes the Assembler to
delete its assembly language input file (ie the Compiler's output
file) when it has finished using it. Although the effect of the
Compiler-supplied "-z" specifier to the Assembler can be overridden
via a compiler command line option (ie with the '-r" Compiler
option, which forces the Compiler's output file to be retained),
there is no provision made to similarly override the automatically
supplied "-n" and "-s" Assembler options. All this means is that the
Assembler's output listing and symbol table listing will never be
available as the result of a "conventional" compilation/assembly
sequence. The Assembler's output listing and symbol table are
readily available to the user, however, although a 2-step process is
involved: (1) first, compiling/assembling the program with the "-r"
specified on the compiler command line to "save" the ".M<xx>"
assembly language file produced by the Compiler, and (2) then
invoking the Assembler independently to separately assemble this
".M<xx>" file, thereby generating the desired output listing and
symbol table as a result. As noted in the Compiler section of this
manual, all symbols appearing in any output generated by the
Compiler will will be pre-pended with an underscore character, which
is automatically added to all symbols by the Compiler.

As inferred by the preceeding comments, although the Assembler is
nominally supplied for use by the Compiler proper, it is also
possible for the user to independently call the Assembler for
assembling assembly language programs directly - either assembly
language files which have been previously produced by the Compiler,
or assembly language programs that may have been written by the
user. The ability to independently use the Assembler in this way is
very useful, for example, when the user wishes to include an
assembly language routine as a part of a larger overall C program,
or to produce a separate assembly language program. The remainder of
this Assembler Section is concerned with using the Assembler

C.5.1

independent of the compiler for these types of purposes.

ASSEMBLER COMMAND LINE

The Assembler may be called independently by entering a line of the
form:

r<xx> <file> {<options>}

where r<xx> represents the Introl filename of the Relocating
Assembler, <file> is the name of the assembly language source file,
and {<options>) represents zero or more Assembler option specifiers.
The Assembler's assembly language input file is expected to have a
filename extension; if none is explicitly specified, a filename
extension of the form ".M<xx>" is assumed. The output file produced
by the Assembler will be a relocatable module, normally having the
same name as the input file, but with the filename extension ".R".

The "<xx>" as used in both the "r<xx>" and the ".M<xx>"
designations mentioned above, represents a 2-digit number unique to
the particular Introl-C compiler package being used. For those
Introl-C packages that target the 6809 processor, the "<xx>"
represents the digits "09"; for versions that target the 6801 and
similar processors, "<xx>" represents the digits "01"; for versions
targeting the 6805, "<xx>" represents "05"; for versions that target
the 68000, "<xx>" represents the digits "68"; for versions that
target the NS16000, "<xx>" represents "16"; for versions that target
the 8086, "<xx>" represents "86". Therefore, if the Introl-C package
happens to target the 6809, for example, the appropriate filename
for the Relocating Assembler would be "r09", and the default
extension assumed for the Assemblerls'input files would be ".M09".

ASSEMBLER OPTIONS

Assembler options are listed and described below. Some of these
options may be legally specified on the compiler call line when the
Assembler is being called automatically as the result of a
compilation. However, most of the Assembler options are legal, or
will have meaning, only when the Assembler is being called
independently by the user.

-a
 The "-a" option forces all symbols except those that begin with
 a question mark, "?", to be placed in the object file. Usually
 only the externals and undefined symbols are included in the
 object file. This Assembler option may not be legally used on a
 compiler command line since it conflicts with the already
 existing (and totally different) "-a" option provided for the
 Compiler proper.

-c
 This option causes the output listing produced by the Assembler
 to be sent to the console. This Assembler option may not be
 legally used on a compiler command line since it conflicts with

C.5.2

 a preexisting (and totally different) "-c" Compiler option.

-i
 This option forces listing of all included files. Normally,
 included files are not part of the output listing. This option
 may not be legally used on a compiler command line since it
 conflicts with a preexisting (and totally different) "-i"
 Compiler option.

-j
 This option forces all symbols which begin with a question
 mark, "?", to be listed in the symbol table. Unless this option
 is used, symbols which begin with a question mark are not
 listed as part of the symbol table listing. The Introl-C
 Compiler uses such labels as targets of short jumps. They are
 not normally listed because they are not generally of interest
 to the programmer. This option will have no effect if used on a
 compiler command line inasmuch as a symbol table is never
 generated as a result of a compiler command line call. A symbol
 table may only be produced it the Assembler is invoked
 independently to assemble an assembly language file.

-l=<filename>
 This option specifies that <filename> is the name of the file
 in which the Assembler's output listing is to be placed. This
 causes the listing to be placed in the named file. This option
 has no effect if used on a compiler command line since an
 output listing cannot be produced as a result of a compiler
 command line call. An Assembler output listing can be produced
 only if the user invokes the Assembler independently to
 assemble an assembly language file.

-n
 This option prevents an assembly output listing from being
 produced. This is one of the three Assembler options
 automatically passed to the Assembler when it is called by the
 Compiler. This option may not be legally specified on a
 compiler command line since it conflicts with a preexisting
 (and totally different) "-n" Compiler option.

-o=<filename>
 This option allows the user to explicitly name the output file,
 and assigns the name <filename> to it. If this option is not
 specified, the object file will otherwise be given the same
 name as the input file, but with the filename extension ".R".
 If the <filename> that is assigned via this option does not
 include a filename extension, the default filename extension
 ".R" will be appended by the Assembler. This option may be
 legally specified on a compiler command line.

-q=<class>
 This option assigns the class number indicated by <class> to
 the output object file generated by the Assembler. The <class>
 entry may be any number from zero ("0") to 256. If this option

C.5.3

 is not used, the module's class specifier will default to being
 class zero (ie "0"). A module's class number is a file
 identification attribute and is usually of importance only if
 identical filenames are assigned to several separate modules by
 the user; in such case, the class number attribute allows any
 specific module to be unambiguously distinguished from all
 other identically named modules. This option may be legally
 used on a compiler command line.

-s
 This option suppresses the listing of the symbol table. This
 option is one of the three Assembler options automatically
 passed to the Assembler when it is called by the Compiler. This
 option may not be legally specified on a compiler command line
 since it conflicts with a preexisting (and totally different)
 "-s" Compiler option.

-u
 This option forces all undefined symbols to default to imported
 symbols. Without this option any symbol which is not imported
 and also not defined in the file will generate an error
 message.

-x
 This option prevents a relocatable object file from being
 produced. This option may be legally specified on a compiler
 command line.

-z
 This option deletes the Assembler's input file when the
 Assembler has finished using it. This is one of the three
 Assembler options passed to the Assembler when it is
 automatically called by the Compiler: it is the option
 responsible for causing the the Compiler's output file to be
 normally deleted when the Assembler has finished using it. The
 effect of the "-z" specifier that is normally supplied by the
 Compiler in such case can be nullified by specifying the "-r"
 Compiler option on the compiler command line, as was mentioned.
 earlier. The '-z" Assembler option may not be legally specified
 on a compiler command line since it conflicts with a
 preexisting (and totally different) "-z" Compiler option.

C.5.4

DEFINITION OF LEGAL INPUT

This section describes the legal input to the Introl Relocating
Assembler.

INPUT FILE SPECIFICATION
The input file expected by the Assembler is an ASCII text file which
contains assembler text. If the input file has been generated by the
Compiler it will already have an acpropriate ".M<xx>" extension, as
discussed previously. If the file named on the assembler call line
has no extension specified, the Assembler will attach the
appropriate ".M<xx>" extension before it attempts to locate the
file. A file's extension is assumed to consist of a period and any
trailing characters.

INPUT LINE
Each line input to the Assembler is assumed to have the form:

[<label>] [<opfield> [<operand>{,<operand>}]] [<comment>]

 or

*<comment>

where <label> represents a symbol,
 <opfield> represents an opcode or pseudo-op,
 <operand> represents an expression,
 and <comment> represents any string of characters.

Those items enclosed in square brackets "[" and "]" are optional,
while an item enclosed in curly brackets, "{" and "}", may be
repeated zero or more times. Thus an input line may consist of an
optional label, followed by at least one space, followed by an
optional opfield, followed by at least one space, followed by zero
or more operands separated by commas, optionally followed by at
least one space and a comment. If a label is specified, it must
begin in column one. It is also legal to indicate an entire line as
being a comment by placing a star, "*", in column one. If no label
is specified, column one must be a blank or a star. An example of a
legal input line:

loop jmp loop This is VERY tight loop

 or

* This whole line is a comment

SYMBOLS
Symbols are made up of letters (a..z, A..Z), digits (0..9), the
question mark (?), the dollar sign (s), the underscore (_) and the
period (.). Symbols must begin with either a letter or a period or
an underscore or a question mark and may be any length. In the
special case of symbols that reference C functions, such symbols

C.5.5

must ALWAYS be preceded by a leading underscore character (ie, just
as the Compiler pre-pends an underscore to all symbols it
generates). The first one hundred characters of a symbol are
retained by the Assembler. Case is not ignored when the Assembler
compares two symbols: "abc" is NOT equal to "ABC" is NOT equal to
"AbC'.

Valid Symbols:
 .abc
 abc09
 .9
 Very.long.symbol.only.the.first.100.characters.count
 ..PIA10.

Although one hundred characters are significant to the Assembler,
when the symbol table is output, only the first sixteen characters
of the symbol are printed so that the printout will look better.

OPCODES
In general, the opcodes recognized by the Assembler are the standard
opcodes, recognized by the microprocessor manufacturer's assemblers.
All opcodes can be placed anywhere on the source line after the
statement label, or at least one space or tab from the beginning of
the source line if no label is present. Opcodes may be in either
upper or lower case.

PSEUDO-OPS
Pseudo-ops are a set of mnemonics which represent commands to the
Assember rather than instructions to be coded. The legal pseudo-ops
are described below in the section on assembler directives.

EXPRESSIONS
The Assembler accepts assembly type expressions that are arbitrarily
complex. Several operators are allowed in assembly time expressions
(alternate forms listed on the same line are identical in function):

 - unary minus (two's complement)
 ~ not (one's complement)
 * multiplication
 / division
 % mod (remainder)
 + addition
 - subtraction
 << shift left
 >> shift right
 & bitwise and
 ^ bitwise exclusive or
 | bitwise inclusive or
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to
 == equal to
 != not equal to

C.5.6

Operator precedence of the above operators is, from highest to
lowest (alternate forms have the same precedence as regular forms):

 - ~
 * / %
 + -
 >> <<
 > < <= >=
 == !=
 &
 ^
 |

Parentheses are allowed in expressions to change the precedence of
an expression.

Assembly time expressions can be used in the operand of any
assembler opcode or directive. Symbols and constant values can be
used interchangeably in an expression. All results of expressions at
assembly time are 32 bit, truncated integers. Constant values are
defined as a numeric digit (0..9), followed by zero or more numeric
digits or the letters A..F, followed by a radix indicator.

n<radix>

where n is 0..9,A..F (must be a valid digit in the given radix),
preceded by a numeric digit, and <radix> is

 H hexadecimal
 O,Q octal
 B binary
 D or nothing decimal

An alternate way of specifying constants is by preceding the
constant by the alternate radix indicator followed by one or more
valid digits in the given radix.

 <altrad>n

where <altrad> is

 $ hexadecimal
 @ octal
 # binary
 & or nothing decimal

and n is 0..9,A..F (must be a valid digit in the given radix). No
preceding numeric digit is required.

Constants may also be ASCII character constants, either one or two
characters long:

 '<ch> is a one character constant
 "<chch> is a two character constant

C.5.7

The Assembler also recognizes a special constant that represents the
assembly time location counter: "$" or "*". When "$" or "*" is used
in an expression, the value taken is the location counter at the
instant of assembly of the line containing the "$" or "*".

Examples of Constants:

 01010101B
 17q
 $10
 17777o
 "AB
 567H
 %0110101
 0ffffh
 '@
 13
 7FFH
 $
 *

Examples of valid expressions:

 (start-end)>2 start minus end shifted right by two

 abc*5 five times the value of abc

 'a!80h ascii value of 'a' 0Red with 80 hex

 $+4 value of the location counter plus four

 *-3 value of the location counter minus three

 $FFFF<<(3-LABEL)+* ?????

ADDRESSING MODES
All addressing modes of the microprocessor are recognized by the
Assembler.

ASSEMBLER DIRECTIVES
The following is a list of assembler directives. An assembler
directive is a line which issues a command to the Assembler. All
assembler directives may be in either upper or lower case.

comm - Common Area
This directive has the form:

<label> comm <size>

where <label> is any legal identifier and <size> is an absolute
expression which indicates the size, in bytes, which should be
reserved for the label. The comm directive has virtually the same
effect as the import directive except that, if the Linker cannot

C.5.8

find any definition to satisfy the external reference, it will
reserve a location in the bss segment segment of <size> number of
bytes. A label may appear in any number of comm directives.

dc - Define Data Constant
This directive has the form:

[<label>] dc[.<sizecode>l <expression>{,<expression>}

where <sizecode> indicates an optional letter ("b", "W", or 11110)
which indicates the size of the data object (byte, word, or long).
The <expression> is an absolute or relocatable expression whose
value is placed in the location. Multiple locations may be defined
by a single dc directive by specifying multiple expressions
separated by commas. Each expression will be evaluated and the
resultant values will be placed in successive locations, each of
which is assumed to be the size indicated by the size code letter.
If the size code letter is omitted, the size is assumed to be the
size of an integer (2 bytes). In the case of the dc directive it is
permitted to have an expression of the form:

 '<string>'

where <string> is one or more ASCII characters. The characters will
be packed into successive bytes.

ds - Define Data Storage
This directive has the form:

(<label>] ds[.<sizecode>] <size>

where <sizecode> indicates an optional letter ("b","w",or "l") which
indicates the size of the data object (byte, word, long). The <size>
indicates the number of data objects for which space is to be
reserved. The number of bytes reserved is the <size> multiplied by
the size of the data object (1, 2, or 4 bytes).

end - End of Assembly
This directive has the form:

 end [<label>]

where [<label>] is an optional label which, if specified, causes the
output module's entry point to be set to that indicated by the
label. The label should be an external label which must have been
defined before the occurrence of the "end" directive. This directive
is used to signal the end of input for the Assembler.

equ - Equate Svmbal With A Value
This directive has the form:

 {<label>} equ <expression> {<comment>}

The equ directive gives the value of the expression in the operand

C.5.9

to the label. The label and operand are both required with an equ
directive; the comment is optional. The equ directive is similar in
function to the "set" directive except that a symbol defined with an
equ cannot be redefined elsewhere in the program. The <expression>
cannot contain external references, forward references, or undefined
symbols; it may, however, be relocatable.

 one equ 1 equate the value 1 to one
 five equ one*5 equate the value one times 5 to five

err - Programmer-Generated Error
This directive has the form:

 err {<string>}

The err directive will cause an error message to be printed by the
Assembler. The total error count will be incremented as with any
other error. The err directive is normally used in conjunction with
conditional assembly directives for condition checking. The assembly
proceeds normally after the error has been printed. The optional
{<string>} may be used to specify the nature of the error generated.

export - External Symbol Definition
This directive has the form:

 export <symbol>{,<symbol>,...,<symbol>} {<comment>}

The export directive is used to specify that the list of symbols is
defined within the current source program, and that these symbol
definitions should be passed to the Linker so other programs may
reference them. If the symbols contained in the operand of this
directive are not defined in the program, an error will be
generated.

fcb - Form Constant Byte
This directive has the form:

{<label>} fcb <expression list> {<comment>}

The fcb directive allows the programmer to define a byte constant or
series of byte constants. The <expression list> in the fcb operand
is a sequence of one or more expressions separated by commas. The
value of each expression is truncated to 8 bits and stored as a
single byte in the object program. Multiple expressions are stored
in successive bytes. If a field between two commas is empty, a zero
value is stored for that byte. The label and comment fields are
optional. An error will occur if the upper eight bits of each
expression in the operand do not evaluate to all zero's or all
one's.

table fcb 0,1,2,3,0fh,27q,7
 fcb 0,,,,,,,,,0 ten zero bvtes
 fcb five,one,4*5,'A

C.5.10

fcc - Form Constant Character
This directive has the form:

{<label>} fcc <delimiter><string><delimiter> {<comment>}

 -or-

{<label>} fcc <expression>,<string> {<comment>}

The fcc directive converts a string of characters into a sequence of
bytes containing the characters' ASCII-values. Two forms of the fcc
directive are available. The first form above delimits the string to
be saved by a delimiter character which can be any character except
the numeric (0..9) digits. The delimiter character cannot appear in
the given string. The second form of the fcc directive takes two
arguments, separated by a comma. The first argument is an expression
representing the length of the subsequent string. The expression
argument of the fcc directive must begin with a numeric (0..9)
digit. The length expression represents the exact length of the
resultant string: if the given string is longer than this length,
the string is truncated; if the given string is shorter than this
length, the string is expanded with spaces (ASCII 20H). When the
length expression is longer than the given string, there is a danger
that a comment, if one is given, may be taken as part of the string.
It is usually better to leave comments out of this type of fcc
directive.

msgl fcc 'this is a string' "'" is the delimiter
 fcc /this is another string/ "/" is the delimiter
ms92 fcc 64,this is yet another
 fcc 26,abcdefghijklmnopqrstuvwxyz
 fcc /abcdefghijklmnopqrstuvwxyz/

The last two examples save exactly the same sequence of bytes in
memory: the 26 lower case alphabetic characters, in order.

fdb - Form Double Byte Constant
This directive has the form:

 {<label>} fdb <expression list> {<comment>}

The fdb directive is similar to the fcb directive above except that,
whereas the fcb directive causes each expression in the list to be
taken as a byte value, the fdb directive instead causes each
expression to be taken as a double byte, or word, value.

address.table
 fdb routine.l,routine.2,routine.3
 fdb routine.4,routine.6
address.table.length equ ($-address-table)/2

 fdb 1024*48,address.table,address.table.length
 fdb "AB,01010101B,37D

C.5.11

ident - identify module
This directive has the form:

 ident <name>,<class>,<rev>

where <name> will be the name of the output module, <class> is an
integer from "C" to "255" which specifies the class number to be
given the resultant module, and <rev> is a revision number to be
given the resultant module. If the class or revision numbers are
left unspecified they will default to zero (0). If the module name
is left unspecified it will default to the filename of the assembly
language input file, minus any extension.

import - External Symbol Reference
This directive has the form:

 import (<loc>:]<sym>{,[<loc>:]<sym>}

where <loc> represents an optional location counter specification
and <sym> is some symbol to be imported. The import directive is
used to inform the Assembler that the named symbols are referenced
by the current source program but are defined elsewhere. Each symbol
in the list may be preceded by an optional absolute expression whose
value must be between 0 and 15. The expression indicates the
location counter the corresponding symbol is assumed to be under.
The Linker will issue an error message if the symbol has been
specified under a different location counter than the one listed on
the import directive.

If import is not used to specify that a symbol is defined in another
program, an error will be generated, and all references to the
symbol in the current program will be flagged as being undefined.

lib - Load A Disk File
This directive-has the form:

 lib <filename>

The lib directive makes it possible to read a disk file as part of
the assembly process. The file is used as if is were actually a part
of the source code being assembled. The <filename> argument should
be a valid file name for the system you are using.

 lib MYFILE.MO9

list
This directive has the form:

 list

The list directive reverses the effect of a previous nolist
directive. (See the nolist directive below for a description of its
function).

C.5.12

loc
This directive has the form:

 loc <counter>

where <counter> is an integer within the range 0 to 15. This
directive indicates that all code generated until the next "loc"
directive will be placed under the named location counter.

nolist
This directive has the form:

 nolist

The nolist directive prevents the code following it from being
listed in the assembler output listing. The nolist directive works
in conjunction with the "list" directive, decribed earlier, to
bracket code which is not to appear in the output listing. A nolist
is in effect until a list directive appears. The list and nolist
directives may be nested; therefore, in order to nullify two
successive nolist directives, the Assembler must subsequently
encounter two successive list directives.

offset
This directive has the form:

 offset <expression> (<comment>)

The offset directive allows the user to generate labels whose values
represent absolute offsets from some origin. This is useful in
defining labels which are to be used as offsets into predefined
tables.

 offset 0 set offset at zero
data ds.b 2 set label "data" equal to 0
data2 ds.b 1 set label "data2" equal to 2

C.5.13

rmb - Reserve Memory Bytes
This directive, which is identical to the ds.b form of the ds
directive discussed previously, is defined as follows:

{<label>} rmb <expression> {<comment>}

The rmb directive causes the location counter to be incremented an
amount specified by the expression in the operand field. This
reserves an area in memory whose length, in bytes, is equal to the
value of the operand expression. The memory area reserved by the rmb
directive is uninitialized by the directive. The expression cannot
contain external references, forward references, or undefined
symbols. The label and comment fields are optional.

xtable rmb 256 save 256 byte for xtable
 rmb 20 save 20 bytes for the stack
stack
data rmb 1024*4 save 4K for data area
buffer.length equ 132
buffer rmb buffer.length reserve buffer space

set - Set Symbol To A Value
This directive has the form:

<label> set <expression> {<comment>}

The set directive assigns the value of the expression to the label.
Function of the set directive is similar to that of equ except that
labels defined using set can have their values redefined in another
part of the program by using another set directive. The set
directive is useful for establishing temporary or re-usable counters
within macros.

syn - Equate Labels
This directive has the form.

<symbol> syn <symbol>

where <symbol> is any previously defined symbol. This directive
makes the first symbol synonomous with the second symbol. The new
symbol has all the attributes of the original. Thus the user may
redefine opcodes, register names, labels, or any other symbol.

C.5.14

 DEFINITION OF INTROL-C

This section provides a detailed definition of the Introl-C
implementation of the C programming language. It assumes the reader
already has a reasonable understanding of "standard" C and is not
intended to serve as a tutorial on the C language.

LEXICAL CONVENTIONS

WHITE SPACE
Blanks, tabs, newlines, and comments are considered "white space".
For the most part the Compiler ignores white space, although,
occasionally white space may be required to separate otherwise
adjacent identifiers, keywords, and constants.

COMMENTS
The character combination slash star (/*) indicates the beginning of
a comment. Comments must be terminated with a star slash combination
(*/). Comments are considered white space and have the same effect
as a blank. Introl-C allows comments to be nested, permitting large
sections of code (which may already contain comments) to be
"commented out" by simply bracketing the section with /* and */.
This is not possible in "standard" C since standard C does not allow
nesting of comments. Introl-C provides a Compiler option (the "-s"
option) to permit the user to override this "nesting of comments"
feature if the user wishes to disallow nested comments. Each slash
star (/*) combination used in a comment requires that a matching */
terminator also appear in the comment. That is, the following may
not do what you would think:

/* This comment /* doesn't end at this terminator -> */

Comments are removed from text before preprocessor directives are
evaluated; thus preprocessor directives may also be "commented out"
by bracketing them with /* and */.

IDENTIFIERS
An identifier consists of an Alphabetic letter followed by zero or
more letters or digits. There is no limit on the number of
characters which may be used to specify an identifier, although only
the first ninety (90) characters will be considered significant. A
Compiler option (the "-y[=<n>]" option) is provided to permit the
user to set the maximum identifier length to values less than the
normal maximum of ninety characters. The underscore, (_), counts as
a letter. Upper and lower case letters are considered to be
different.

KEYWORDS
The following identifiers are reserved and may not be redefined by
the user.

auto double int struct
break else long switch
case extern register typedef

C.6.1

char float return union
continue for short unsigned
default goto sizeof while
do if static

CONSTANTS

Integer Constants: Integer constants may be represented in several
different formats. A string of digits beginning with a 0 (zero) is
taken to be in octal; the digits 8 and 9, if used, are taken to have
the octal values 10 and 11 respectively. If the constant begins with
an 0x or 0X (zero x) it is taken to be hexadecimal and the
characters A through F (either upper or lower case) may be used to
represent the decimal values 10 through 15 respectively. If there is
no preceding 0 or 0x or 0X, the constant is taken to be decimal. A
decimal constant which is greater than the largest signed integer is
taken to be a long. An octal or hexadecimal constant which is
greater than the largest unsigned integer is taken to be long.

Long Constants: Long constants may be declared explicitly. A
decimal, hexadecimal, or octal constant which is terminated with the
letter L (either upper or lower case is permitted) is taken to be
long. Long constants are implemented in 32-bit two's- complement
form.

Character Constants: A character constant is any graphic or
non-graphic character enclosed in single quotes; 'x' for example.
The value of a character constant taken to be the numerical value
used to define that character in the machine's character set
(usually ASCII).

The single quote character ('), the backslash character (\) and
various non-graphic characters may be represented by the following
character combinations:

newline \n
horizontal tab \t
backspace \b
linefeed \l
carriage return \r
form feed \f
backslash \\
single quote \'
bit pattern \ddd Where ddd is 1,2 or 3 octal digits
 which specify the character's value.

 *Note: Introl-C normally interprets "\-n" (ie the newline
 character in C) as being a linefeed character; however, a
 Compiler option (the "-z" option) may be used to instead equate
 "\n" with being a carriage return character.

Unless a backslash is used in one of the above character
combinations, the backslash will normally be ignored. Character
constants are represented as a single 8-bit unsigned byte.

C.6.2

Floating Constants: A floating point constant consists of an integer
part, a decimal point, a fractional part, and an exponential part.
The integer and fractional parts each consist of a string of one or
more digits. The exponential part consists of an "E" (either upper
or lower case), followed by an optionally signed integer. Either the
integer part or the fractional part (but not both) may be missing;
either the decimal point or the exponential part (but not both) may
be missing.

Strings: A string consists of a sequence of zero or more characters
placed between a set of double quote marks, as in "this is a
string". A string has the type Array Of Characters and thus may be
used anywhere an array of characters would be appropriate. All
strings are treated as uniquely distinct data objects, even when
they contain identical sequences of characters. The Compiler will
place a null byte (\0) at the end of each string so that functions
which scan the string can determine its end by the usual means. All
the conventions for representing non-graphic characters which apply
to character constants apply to strings as well. To represent a
double quote inside a string it is necessary to precede it with a
backslash. Strings may be continued on a new line by inserting a
backslash followed immediately by a carriage return. The backslash
carriage return combination is not considered part of the string.

PRE-PROCESSOR DIRECTIVES
A preprocessor directive is an instruction to the preprocessor
(lexical scanner) which controls the input to the Compiler proper.
These directives control such things as file insertion (#include),
textual substitution (#define), and conditional compilation
(#ifdef). Pre-processor directives always start with a pound sign
(#) and must begin in column one. The effect of these directives is
the controlled alteration of the program text input to the compiler.
The directives supported by Introl-C are #define, #else, #endif,
#ifdef, #ifndef, #include, #undef. Their function is explained
below.

#define: The #define directive allows an identifier to be equated
with a string. There are two forms of the define directive. One case
handles simple string substitution, in which a token-string will be
substituted for any occurrence of the identifier which appears in
the program text following the #define statement. The other case
allows parameter substitution, so that sections of the replacement
string may be specified at the place in the code where the
identifier is used. The first case of the #define directive, calling
for simple string substitution, has the following form:

#define <identifier> <string>

where <identifier> represents the name of the identifier and
<string> is any series of characters. The <string> is optional.
There must be at least one space between the word #define and the
identifier. This form of the define statement causes any occurrence

C.6.3

of the identifier which appears in the program text following the
define statement to be replaced with the strings. Notice that there
is no semicolon required at the end of a #define directive. The
<string> is taken to be all the characters which follow the
identifier on the #define line. Thus, it is incorrect to place a
semicolon at the end of the line unless it is actually intended to
include a semicolon in the replacement string.

The second form of the #define directive looks like this:

#define <identifier>(<identifier>,...,<identifier>) <string>

This form of the define statement (called a macro definition) has a
set of parameters following the first identifier. Notice that the
left parenthesis of the parameter list must immediately follow the
first identifier with no intervening white space. If there is any
white space following the identifier, the preprocessor will
interpret the #define statement as being of the simple string
substitution type described above and will treat the parameter list
as if it is part of the <string>. The parameter list consists of a
series of identifiers separated by commas. Each identifier in the
parameter list should appear at least once in the <string>. When the
defined identifier appears in the program text it may be followed by
an argument list enclosed in parentheses and containing strings
separated by commas. If so, these strings will be substituted for
their respective parameter identifiers in the <string> of the define
statement before the <string> replaces the identifier in the program
text.

The #define preprocessor directive has the additional effect of
"defining" an identifier for use with the #ifdef and #ifndef
preprocessor directives. It is permissible to have a #define
statement with no <string> parameter; this will simply "define" the
identifier within the preprocessor.

#else: This directive modifies the effect of a previously declared,
non-terminated #ifdef or #ifndef conditional compilation
preprocessor directive. If the lines preceding #else were being
ignored because of an #ifdef or #ifndef, the #else directive will
cause the lines following the #else to be processed. Likewise if the
lines preceding #else were being processed because of an #ifdef or
#ifndef, the lines following the #else will be ignored. The effect
of the #else directive lasts until an #endif directive is
encountered. The #else directive has the following form:

#else

#endif: This directive terminates the the most recent previously
declared #ifdef or #ifndef directive. It has the following form:

#endif

#ifdef: The #ifdef directive is used to denote the starting point of
a section of code which is subject to conditional compilations. This

C.6.4

directive has the form;

#ifdef <identifier>

where <identifier> represents an identifier name. If the named
identifier is currently "defined" in the preprocessor, the lines
following the #ifdef directive will be processed until an #else
control line is encountered or, in the absence of an #else, until
the #endef directive is encountered; any lines between #else (if
present) and #endef are ignored for this case. If the identifier
named on the #ifdef line is NOT currently defined, then only the
lines between the #else (if present) and the #endef terminator line
will be processed. An identifier is taken to be "defined" if it has
previously appeared as the identifier on a #define preprocessor
directive line. An identifier is taken to be "undefined" if it has
previously appeared on an #undef preprocessor directive line, or if
it has never appeared on a #define directive line.

#ifndef: The #ifndef directive is similar in function to #ifdef,
above, except that compilation of subsequent code is conditional
upon an the identifier being currently "undefined" in the
preprocessor. The #ifndef directive has the form:

#ifndef <identifier>

where <identifier> is the identifier name. If the named identifier
is NOT currently defined, subsequent lines will be processed until
an #else control line is encountered or, in the absence of an #else,
until the #endif directive is encountered; any lines between #else,
(if present) and #endef are ignored in this case. If the identifier
named on the #ifndef line IS currently defined, only the lines
between the #else directive (if present) and the #endef terminator
line will be processed. An identifier is taken to be "undefined" if
it has previously appeared as the identifier on an #undef
preprocessor directive line, or if it has never appeared on a
#define preprocessor directive line. An identifier is taken to be
"defined" if it has previously appeared on a #define preprocessor
directive line.

#include: The #include directive causes the file specified on the
#include line to be inserted in the program text in place of the
#include line. Either of the following forms are permitted:

#include "filename"

or

#include <filename>

where filename is the name of the file to be included. Notice that
the Introl-C compiler allows either angle brackets or double quotes
to surround the filename. Included files may themselves contain
include statements; that is, #include directives may be nested, with
a limit imposed only by the constraints of the operating system.

C.6.5

#undef: The #undef directive causes the named identifier to be
"undefined". Thus any subsequent #ifdef and #ifndef directives which
reference the identifier will operate as if it was never defined. It
has the form

#undef <identifier>

where <identifier> is the name of the identifier that is to be
undefined.

DATA CONVENTIONS

All user defined identifiers have two attributes, (1) storage class
and (2) type, which are described below.

STORAGE CLASS
An identifier's storage class indicates the location, scope and
lifetime of the storage associated with the identifier. There are
four different storage classes: auto, extern, static, and register.

auto: Automatic variables are local to the block or function in
which they are defined. They exist only while the block or function
in which they were defined is executing. Their contents are
discarded upon exit from the block. Variables in a function which
are not explicitly defined as having a specific storage class are
assumed to be automatic (ie auto) variables.

extern: External variables exist for the entire execution of the
program and retain their values throughout the execution of the
program. An external variable may be referenced by any function in
the program file in which it was defined. Also, separately compiled
program files which declare external variables of the same name
refer to the same variable, thus allowing communication between
separately compiled program files.

In Introl-C there is little distinction made between an external
"definition" and an external "declaration". It is possible to link
several files together in which an external variable has been
declared but never defined; the linker will simply define the
variable to fit the declarations. It is also permitted to link files
in which an external variable has been defined more than once; the
linker will simply treat the extra definitions as if they were
declarations. The linker will issue a warning if an external
variable has multiple incompatible definitions in a group of files
to be linked. An external variable may be initialized only once
among all the program files-to be linked together.

register: The idea behind the register storage class is that it may
be desirable to have a frequently used variable stored in a high
speed register. The register storage class is a hint to the compiler
that it should, if possible, place this variable in a high speed
register. In the case of Introl-C, the compiler makes most of these
kinds of decisions on its own. Specifying a variable as being of

C.6.6

register storage class is not guaranteed to cause the variable to be
placed in a register. In fact, Introl-C register variables are
identical to auto variables.

static: The scope of a variable declared with a static storage class
is limited to the block, function, or file in which it was defined,
much like an auto variable. Unlike an auto variable, however, the
contents are not discarded when the block containing the variable
terminates. That is, the contents of a static variable remain valid
between invocations of the defining block or function.

typedef: The typedef storage class does not actually assign storage
but is simply a mechanism for associating an identifier with a data
type. It is included here because it is syntactically identical to a
storage class specifier. Once an identifier has been included in a
typedef declaration it may be used in place of a type specifier in
subsequent type declarations.

TYPE
The second attribute that may be specified for an identifier is its
type. Types may be divided into two main classes, the first being
the "fundamental" class of data types and the second the "derived"
class of types. The derived types comprise a conceptually infinite
class of types which may be constructed from combinations of
fundamental types or already defined derived types. The presently
supported fundamental types are:

 char
 int
 float

 where int may be optionally preceded by one of the
 modifiers: short, long, or unsigned.

The derived types are as follows:

 arrays of objects of most types
 functions which return objects of various types
 pointers to objects of any type
 structures of objects of most types
 unions of objects of most types

The fundamental types are discussed individually below.

char: A character variable is defined to be large enough to store
any character from the machine's character set (assumed to be ASCII)
as a positive number. All character variables are implemented as 8
bit bytes. The Introl-C Compiler treats character variables as
unsigned quantities.

int: integers are used to represent integral quantities. Integer
data objects can be declared in various sizes or as signed or
unsigned by use of an optional modifier (or the lack thereof).
integers come in up to three sizes: "short int", "int", and "long

C.6.7

int". Short integers are guaranteed not to be longer than an
integer. Integers are guaranteed to not to be longer than a long
integer. In Introl-C short integers are 16 bit quantities and long
integers are 32 bit quantities. Normal integers are whatever length
is most appropriate for the machine in use. (Refer to the other
Appendices of this manual for further information on integers which
is specific to the target microprocessor.) All signed integers are
represented in 2's complement form. Unsigned integers represent
positive quantities.

float: Floating point numbers are represented in the IEEE standard
floating point format. A floating point variable is allocated 32
bits of storage which is interpreted by floating point functions in
the following way: the most significant bit is interpreted as the
sign of the number; the next 8 bits are interpreted as a biased
exponent; the remaining 23 bits are interpreted as a normalized
mantissa preceded by an assumed bit which is always set to 1.
Floating point numbers cover the range from approximately 8.43 times
10 to the -37th power to 3.37 times 10 to the +38th power. It is
also possible for floats to take on values outside this range. Such
values are used to represent positive and negative infinity (+inf,
-inf), and Not-a-Number (NaN). In the case of NaN the variable will
be encoded in such a way as to contain an error code and an address
which indicates where and under what circumstances the NaN occurred.
Various printing routines will actually print out "+inf" for
positive infinity, "-inf" for negative infinity, and "NaN" for
Not-a-Number. In the case of NaN, two numbers separated by commas
may be printed following the NaN; the first represents an error code
and the second the address which was encoded in the number. (See
printf and atof in the Standard Library volume).

The derived data types are described below.

Arrays: An identifier may represent an array of any type except
function. Notice that an array MAY be of type pointer to function
and indeed this is usually what is meant when one refers to an
"array of functions."

In expressions, array identifiers are converted to a pointer to the
first member of the array. The converted identifier is, of course,
not an lvalue and thus may not be modified as an actual pointer
might. By definition, the expression El[E2) is identical to
*((E1)+(E2)). The rules for adding a pointer to an integer state
that the result is a pointer which is offset from the original
pointer by a number of bytes equal to the integer multiplied by the
size of the object to which the pointer points. Thus if El is an
array or pointer, and E2 is an integer, then both El[E2] and
*((E1)+(E2)) refer to the E2th element of El. Multi-dimensional
arrays are simply implemented as arrays of arrays. That is,
El[E2](E3] is identical to (E1[E2])[E3]. Multi-dimensional arrays
are stored row-wise in memory (the rightmost subscript varies
fastest).

functions: An identifier may represent a function which can be

C.6.8

declared as returning any one of the fundamental types as well as a
pointer to any type. A function identifier may represent two
different things. If it is followed by a set of parentheses (which
may contain a parameter list) it is interpreted as a function call;
otherwise it is interpreted as the address of the function.

pointers: An identifier may represent a pointer to any type. A
pointer to a type may be thought of as a variable which contains the
address of an object of that type. That is, a pointer to integer
contains the address of some variable of type integer. It is
possible for a pointer to point to nothing, in which case it is said
to equal NULL; this is signified by setting the pointer equal to
zero. Only three mathematical operations are defined for pointers. A
pointer may be added to an integer, in which case the result is a
pointer which is offset from the original pointer by a number of
bytes equal to the integer multiplied by the length of the object
pointed to. This has the same effect as specifying the pointer with
the integer as an index (see arrays above). An integer may be
subtracted from a pointer, with an effect identical to adding the
negated integer to the pointer. Thirdly, a pointer may be subtracted
from another pointer, in which case the result is an integer
representing the number of objects separating the objects being
pointed at. This last operation is defined only when both pointers
point to objects in the same array.

structures: An identifier may represent a structure whose elements
may be of any type except "function". (See the note in "Arrays"
above). A structure allows a set of variables of various types to be
grouped under a single name for convenience. The only operations
which can be performed on a structure are (1) to take its address
(using the "&" operator), and (2) to access one of its members.
Functions may not be assigned or copied as a unit nor may they be
passed to or returned from functions (pointers to structures may be
passed to and returned from functions, however). When referencing
structure members through pointers, the construct
(*<Pointer>).<member> is equivalent to <pointer>-><member>, where
<pointer> is an expression which evaluates to "pointer to structure"
and <member> is a member of the structure pointed to.

Introl-C provides separate name spaces for all structure and union
member names, allowing identical member names to be used in
different struct or union declarations with no restrictions. Thus,
two different structures may each have a member with the same name.
Another advantage to having all structure and union member names in
separate name spaces is that the Compiler can do more extensive
type-checking of structure references. To access a member of a
struct or union through a pointer expression, the pointer expression
must be of type pointer to the particular structure or -union in
question. This type checking can be overridden if desired by using a
cast to cast the pointer to the type of the structure to be
accessed.

unions: An identifier may represent an object which can contain any
one of several types of any type except function. (See arrays).

C.6.9

Introl-C provides separate name spaces for all structure and union
member names, allowing identical names to be used in different
struct or union declarations. Thus, two different unions may each
have each have a member with the same name. The Compiler will flag
as an error a reference to a union or structure member which is made
with a pointer which is not of type pointer to the union or
structure referenced. If it is desired to defeat this type-checking,
the pointer in question may be cast as a pointer to the union or
structure to be referenced. (See "structures" above).

DECLARATIONS

Declarations are the mechanism for associating an identifier with a
type and storage class. There are two main types of declarations,
Data Declarations and Function Definitions.

DATA DECLARATIONS
A data declaration consists of an optional storage class specifier,
followed by an optional type modifier, followed by an optional type,
followed by zero or more declarators (each of which may be followed
by an initializer) separated by commas, followed by a semicolon,
";". The storage class specifier may be any of the following:

 auto
 extern
 register
 static
 typedef

A type modifier may be any of the following:

 long
 short
 unsigned

A type may be any of the following:

 char
 int
 float
 struct <identifier> {<member declarations>}
 union <identifier> {<member declarations>}
 <typename>

A declarator may be an identifier, or a declarator enclosed in
parentheses, or a declarator preceded by a star, or a declarator
followed by a set of empty parentheses, or a declarator followed by
a set of brackets which may optionally enclose a constant
expression.

All items are optional except the declarator. If the storage class
is not specified and the declaration is within a function
definition, then auto will be assumed; otherwise extern will be
assumed. Type modifiers may appear only for a type of int, or when

C.6.10

the type is left unspecified. If the type modifier is not specified,
int will be assumed.

The typedef storage class specifier does not reserve storage but is
used to associate an identifier with a data type. It is included
here because, from a syntactical point of view, it is a storage
class specifier.

For structure and union types either the <identifier> or the
(<member declarations>) part may be omitted (but not both). That is,
a structure or union type consists of the following: the keyword
"struct" or "union", followed by an optional identifier, optionally
followed by a set of braces which enclose a list of member
declarations. A member declaration consists of an optional type
specifier followed by zero or more declarators where declarators are
as defined above. The <identifier> part may appear without the
{<member declarations>) part, provided that the same identifier has
previously appeared in a structure definition which included the
(<member declaration>) part.

The type may be a <typename>, where <typename> was a previously
declared identifier in a declarator which appeared in a declaration
having a storage class of "typedef".

INITIALIZERS
As mentioned above it is possible for a declarator to be followed by
an initializer. The initializer is a vehicle by which the programmer
may specify the initial value of a variable. For external and static
variables the value is set once, logically, at compile time. For
automatic variables the value is assigned to the variable on each
entry to the function (ie at run time).

The syntax for the most general use of initializers, as applied to
external or static variables, is as follows: an equal sign,
followed by an initializer-list. The initializer-list may consist of
a constant expression or an open brace, "C", followed by zero or
more initializer-lists separated by commas, followed by a closing
brace, ")". The constant expression is defined below in the
paragraph on "Expressions"..

When the item to be initialized is a scalar, (char, int, long,
float, pointer), the initializer may consist of only a single
constant expression which may, optionally, be enclosed in braces,
"(", ")".

For any item which is an aggregate, such as a structure or array,
the initializer consists of an initializer-list enclosed in braces.
The initial values are applied to each element of the structure or
array in the order in which they appear. If fewer values appear than
there are elements in an array or members in a structure, then the
remaining elements or members are initialized to zero.

This definition may be applied recursively to aggregates of
aggregates (sub-aggregates) so that the values of elements of

C.6.11

sub-arrays and sub-structures may be explicitly defined. The
symantics for subaggregate initialization are as follows:

If the initializer-list begins with a left brace, then the
succeeding initializers, up to the next right brace, apply to the
sub-aggregate. If a right brace is encountered before all the values
of the sub-aggregate are initialized, the succeeding members of the
sub-aggregate are initialized to zero. If the sub-aggregate
initializer-list does not begin with a left brace, then as many
elements from the initializer-list are used as is necessary to
initialize all the members or elements of the sub-aggregate.

It is not permitted to initialize variables of type union.

In the case of an array in which the size is not specified, the
Compiler will set the size of the array to the number of initialized
values specified for it.

In the special case of a character array the initializer may take
the form of a constant string. The array will be initialized such
that each element of the array is set to the value of the
corresponding character in the string constant. The terminating NULL
is also considered part of the initializer and is encoded in the
array. As above, if the size of the array is left unspecified the
size will be the same as that of the NULL terminated string which
initializes it.

The syntax for an initialized automatic variable is slightly
different than for that of an external or static variable. It may
consist of an equal sign, "=", followed by an expression which may,
optionally, be enclosed in braces, "(", and ")". Notice that this
definition allows an arbitrarily complex expression which may
include constants, functions, and previously declared variables. The
expression must evaluate to a scalar or float; it is not permitted
to initialize aggregate (structure or array) automatic variables.

FUNCTION DEFINITIONS
A function definition is the mechanism by which a code segment is
defined. Most programs include a function called "main" which is, by
default, the function executed when the program starts. A function
definition is indicated by an optional storage class specifier,
followed by an optional type modifier, followed by an optional type
specifier, followed by a declarator followed by a set of parentheses
which enclose zero or more identifiers, followed by zero or more
data declarations, followed by a compound statement. The storage
class specifier may be any of the following.

 extern
 static

The type modifier may be any of the following.

 long
 short

C.6.12

 unsigned

The type may be any of the following.

 char
 int
 float
 <typename>

If the storage class is static, then the function will be known only
in the program file in which it was defined; otherwise it will be
known externally. If the storage class is omitted the function
defaults to external. The type modifiers may be used only for
functions whose type specifier is int or unspecified. The type
specifiers in conjunction with the declarator form indicate the type
of the function's return value. The type of the return value may
only be char, int (long, short or unsigned), float, or pointer. If
the type specifier is omitted it defaults to int.

ABSTRACT TYPE DECLARATIONS
There are two cases in which it may be necessary to refer to a data
type without referring to any particular identifier. One of these
cases involves the cast mechanism and the other involves the sizeof
operator. In either case it may be necessary to specify an abstract
type. An abstract type is indicated by an optional type modifier,
followed by a type specifier, followed by an abstract declarator,
where an abstract declarator is defined the same as a normal
declarator above except that no identifier is permitted. That is, an
abstract declarator may be a null sequence of characters, or an
abstract declarator preceded by a star, or an abstract declarator
followed by a set of brackets (which may contain a constant
expression), or an an abstract declarator followed by an empty set
of parentheses, or an abstract declarator enclosed in parentheses.
In the last case the sequence of characters inside the parentheses
may not be null. In the case of a cast, either the type modifier or
the type specifier, but not both, may be omitted. If the type
specifier is omitted int is assumed.

EXPRESSIONS

An expression is any construct which returns a value. The C language
is very general about expressions. Expressions include constants,
strings, identifiers which have been suitably declared, and
expressions enclosed in parentheses. The result of any expression
operation on an expression is also an expression. An expression may
have side effects. This means, for example, that a variable may
become changed in the process of evaluating an expression. This is
typical of function calls but may also occur in some of the
arithmetic expressions, as with the increment operator (x++) where
the variable is incremented after its value is taken.

A string is in all cases treated like an array of characters. A
string is the same syntactically as a character array identifier and
thus is of type pointer to character when used in an expression.

C.6.13

Any expression may be enclosed in parentheses. The effect is to
cause the enclosed expression to be completely evaluated before
operators external to the parentheses are applied. The resultant
type and value are that of the enclosed expression. The fact that an
expression evaluates to an lvalue is not altered by enclosing such
an expression in parentheses.

CONVERSIONS

The conversion of a value from one data type to another may be done
explicitly, by using a cast for example, or may be implicitly
carried out when some operation is performed, as when an integer is
assigned to a float.

IMPLICIT CONVERSIONS
Many conversions are carried out automatically by the Compiler,
particularly in the case of arithmetic expressions. The general
pattern for deciding what will be converted to what in an arithmetic
operation involving two operands is as follows:

 If either operand is of type float the other will be converted to
 float and that will be the resultant type;
 Otherwise if either operand is of type long int the other will be
 converted to long int and that will be the resultant type;
 Otherwise if either operand is of type unsigned int the other
 will be converted to unsigned int and that will be the resultant
 type;
 Otherwise if either operand is of type int the other operand will
 be converted to int and that will be the resultant type;
 Otherwise if either operand is of type short int the other
 operand will be converted to short int and that will be the
 resultant type;
 otherwise both operands must be of type char and that is the
 resultant type.

Notice that character expressions are not always automatically
converted to integer and, in general, when used in arithmetic
expressions, a character expression is converted to the type of the
other operand. Thus, when two expressions of type character are
added, the result will be of type character. If the result cannot
fit in a character size space an overflow condition will occur.
Character expressions are, however, always converted to integer when
used as function parameters.

The following conventions apply to the results of various
conversions. Note that Integral includes all types other than float.

Float to integral Type: The conversion from float to an integral
type is as follows. The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0), and this
is the resultant value if the truncated value is within the range
which can be represented by the specified integral type. If the
truncated value is larger than that which can be represented by the

C.6.14

specified integral type, then the result is undefined.

Integral to Float Type: The conversion of an integral expression to
type float results in the value of the integral expression as
represented in floating point format. If the integral expression has
more bits representing its value than the floating point allows in
its mantissa, there will be some loss of precision when large
numbers are converted. Presently this happens only when converting
long integers to float.

Integral to Integral Type: if the bit length of the source
expression type is longer than the bit length of the resultant type,
then the only conversion done is to discard the excess high order
bits. When the bit length of the destination type is longer than the
bit length of the source expression type, excess high order bits
will be filled with either the sign bit of the source expression or
zeros. If the source expression is of unsigned type then high order
bits are zero filled; otherwise they are sign filled. If both source
expression type and destination type are the same length then no
actual change in the bit pattern takes place.

EXPLICIT CONVERSIONS
Sometimes it is desired to force a conversion explicitly. This is
called casting an expression from one type to another, and the
mechanism by which this is done is called a cast. A cast is
indicated by an expression preceded by a set of parentheses which
enclose a type specifier followed by an abstract declarator (as
described in the paragraph on abstract data declarations under DATA
CONVENTIONS).

LVALUES
There is a distinction made between expressions which evaluate to
constant values and those which evaluate to variable values. An
expression which evaluates to a variable value is called an lvalue.
Lvalues may be changed, whereas constant values may not. It makes no
sense, for example, to place a constant value (a non-lvalue) to the
left of an assignment operator because no new value may be assigned
to it. Any attempt to do this will be flagged as an error by the
Compiler. In fact, the "l" in the term "lvalue" is intended as a
reminder that this value may be placed to the left of an assignment
operator.

CONSTANT EXPRESSIONS
In certain cases Introl-C may require the use of a constant
expression. The set of constant expressions is a subset of the set
of regular expressions. Constant expressions are expressions which
can be evaluated to a scalar at compile time and thus may contain no
variables or floating point values. Likewise a constant expression
may contain no operators which change the value of any of their
operands or have variable results. The legal constant operators are
the unary operators:
! ~ - sizeof
the binary operators:
* / % + - << >> < <= > >= == != & ^ | && ||

C.6.15

and the trinary operator:
?:

In the case of a constant expression used as an initializer, the
expression may alternatively consist of a floating point constant
(possibly preceded by a negative sign), or an expression which
evaluates to a constant pointer.

A constant pointer is one whose value is known at compile time. This
includes function names, static and external array names, static and
external variables which are preceded by the addressing operator,
"&", or any of the above offset by a constant expression. The
addresses of automatic variables are not permitted in such an
expression because their location is dynamic (not known at compile
time).

OPERATORS
The following is a list of operators in the order of their priority.
Also listed is the order of evaluation of operators when two or more
operators of the same priority appear in an expression.

 OPERATOR EVALUATED

() [] -> . left to right
! ~ ++ -- - (<type>) * & sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= >>= <<= &= ^= |= right to left
' left to right

The operators are described below in the order of their priorities.

ADDRESSING OPERATORS
Addressing operators evaluate left to right.

Function Operator () The function operator is indicated by a pair of
parentheses preceded by an expression which evaluates to type
"function". There may optionally be a list of expressions separated
by commas within the parentheses. The effect is to execute the
function named. The result of the function operator is an expression
which has a value of whatever type has been defined as the return
type of the function. The expressions within the parentheses may be
of any type and any number; no checking is done to verify that the
types and number of the expressions within the parentheses in the

C.6.16

function call agree with the types and number specified in the
function declaration. Functions may be called recursively.

Array operator [] The array operator is indicated by an expression
followed by a pair of brackets which contain an expression. One of
the expressions must evaluate to type pointer while the other must
evaluate to an integral type. It is usually considered a good
programming practice to make the first expression (the one outside
the brackets) the one which evaluates to type pointer. This is not
of necessity, however, due to the fact that el[e2] is defined to be
identical to *((el)+(e2)). Notice that addition is a commutative
operator and, thus, so is the array operator. The result of an array
operation is an expression which is of the type pointed to by the
pointer expression. The array operator returns the value of the
object that is pointed to when the integral value is multiplied by
the size of the type pointed to and then added to value of the
pointer. The effect is to return the value of the object which is
displaced the integral number from the beginning of an array pointed
to by the pointer.

Structure Member Operator. The structure member operator is
indicated by an expression which evaluates to type structure,
followed by a period, ".", followed by an identifier; as in "a.b".
In Introl-C the expression must evaluate to a structure type which
has the identifier as a legal member; otherwise, the Compiler will
generate an error message. The result is an expression whose type
and value is that of the indicated member in the structure.

Structure Member Pointer Operator -> The structure member pointer
operator is indicated by an expression which evaluates to type
pointer to structure followed by a dash-greater-than character
combination, "->", followed by an identifier; as in "a->b" (there
may be no white space between the dash and the greater than sign).
In Introl-C the type of the structure pointed to by the expression
must have the identifier as a legal member. The result is an
expression whose type and value is that of the indicated member in
the structure pointed to.

UNARY OPERATORS
Unary operators evaluate right to left.

Logical Not Operator ! The logical Not operator is indicated by an
exclamation mark, "!", followed by an expression. The result is an
expression whose type is character and whose value is 0 (zero) if
the original expression was non-zero and 1 (one) otherwise.

Bitwise Not Operator ~ The bitwise not operator is indicated by a
tilde, "~", followed by an expression. The result is an expression
with a value equal to the one's complement of the original
expression and with the same type as the original expression. The
bitwise Not operator may not be applied to types pointer and float.

Increment Operator ++ The increment operator has two forms. It is
indicated by a double plus (two successive plus signs with no

C.6.17

intervening white space, "++") either immediately preceding or
following an expression. The expression must evaluate to an lvalue
(that is, a variable, something which can be written to). When the
double plus precedes a variable, the variable is incremented by one
and the resultant expression is the new value of the variable. When
the double plus follows a variable, the variable is also incremented
but the resultant expression is the value the variable had before it
was incremented. When the increment operator is applied to a
pointer, the pointer is incremented by the length of the object to
which it points; thus it will point to the next object in sequence.

Decrement Operator -- The decrement operator (like the increment
operator) has two forms. It is indicated by a double minus (two
successive minus signs with no intervening white space, "--") either
immediately preceding or following an expression. The expression
must evaluate to an lvalue (that is, a variable, something which can
be written to). When the double minus precedes the variable the
variable is decremented by one and the resultant expression is the
new value of the variable. When the double minus follows the
variable, the variable is also decremented but the resultant
expression is the value the variable had before it was decremented.
When the decrement operator is applied to a pointer the pointer is
decremented by the length of the object to which it points; thus it
will point to the previous object in sequence.

Unary Minus Operator - The unary minus operator is indicated by a
minus sign, "-", followed by an expression. The resultant expression
is the algebraic negation of the original expression. The action of
the unary minus is undefined when used on types unsigned integer and
character (which is also unsigned).

Cast Operator (type) The cast operator is indicated by a data type
name in parentheses, followed by an expression. A data type name is
like a data type declaration but without the object to which it
would normally refer. For example, to cast some expression to type
"function returning pointer to character", one would type "(char
*())El" (where El is an expression). The expression may be of any
type. The resultant expression has the type specified by the cast.

Indirection Operator * The indirection operator is indicated by a
star, "*", followed by an expression which must be of type pointer.
The resultant expression has the type and value of the object to
which the pointer points.

Address Operator & The address operator is indicated by an
ampersand, "&", followed by an lvalue. The resultant expression is a
pointer to the object indicated by the lvalue.

Size of Operator sizeof The size of operator is indicated by the
keyword, "sizeof", followed by either a type name enclosed in
parentheses, or an expression. The result is an expression of type
integer whose value is the size, in bytes, of an object of the type
indicated.

C.6.18

MULTIPLICATIVE OPERATORS
Multiplicative operators evaluate left to right.

Multiplication Operator * The multiplication operator is indicated
by an expression, followed by a star, "*", followed by an
expression. The result is an expression whose value is that of the
algebraic multiplication of the two expressions.

Division operator / The division operator is indicated by an
expression, followed by a slash, "/", followed by an expression. The
result is an expression whose value is that of the algebraic
division of the first expression by the second. If both of the
expressions are of integral type then the result will also be of
integral type and any fractional result will be discarded.

Modulo Operator % The modulo operator is indicated by an expression,
followed by a percent symbol, "%", followed by an expression. The
result is an expression whose value is the first expression modulo
the second expression. That is, the first expression is integer
divided by the second expression with the result equal to the
remainder. Both expressions must be of integral type.

ADDITIVE OPERATORS
Additive operators evaluate left to right.

Addition Operator + The addition operator is indicated by an
expression, followed by a plus symbol, "+", followed by an
expression. The result is an expression whose value is the algebraic
sum of the expressions.

Subtraction Operator - The subtraction operator is indicated by an
expression, followed by a minus sign, "-", followed by an
expression. The result is an expression whose value is the algebraic
result of the second expression subtracted from the first
expression.

SHIFT OPERATORS
Shift operators evaluate left to right.

Left Shift Operator << The left shift operator is indicated by an
expression, followed by a double less-than symbol, "<<", followed by
an expression. The result is an expression whose value is that of
the first expression after having been bitwise left shifted by the
number of bits indicated by the second expression. Zeros are shifted
into the low order bit positions. Both expressions must be of
integral type.

Right Shift Operator >> The right shift operator is indicated by an
expression, followed by a double greater-than symbol, ">>", followed
by an expression. The result is an expression whose value is that of
the first expression after having been bitwise right shifted by the
number of bits indicated by the second expression. If the first
expression is of signed type, its sign bit will be shifted into the
high order bit positions; otherwise zeros will be shifted into the

C.6.19

high order bit positions. Both expressions must be of integral type.

RELATIONAL OPERATORS
Relational operators evaluate left to right.

Less-Than Operator < The less-than operator is indicated by an
expression, followed by a less-than symbol, "<", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if the first expression is algebraically
less than the second expression, and a zero (false) value otherwise.

Less-Than Equal Operator <= The less-than equal operator is
indicated by an expression, followed by a less-than equal character
combination, "<=", followed by an expression. There may be no white
space between the less-than symbol and the equal symbol. The result
is an expression of type character which has a non-zero (true) value
if the first expression is algebraically less than or equal to the
second expression, and a zero (false) value otherwise.

Greater-Than Operator > The greater-than operator is indicated by an
expression, followed by a greater than symbol, ">", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if the first expression is algebraically
greater than the second expression, and a zero (false) value
otherwise.

Greater-Than Equal operator >= The greater-than equal operator is
indicated by an expression, followed by a greater-than equal
character combination, ">=", followed by an expression. There may be
no white space between the greater-than symbol and the equal symbol.
The result is an expression of type character which has a non-zero
(true) value if the first expression is algebraically greater than
or equal to the second expression, and a zero (false) value
otherwise.

EQUALITY OPERATORS
Equality operators evaluate left to right.

Equal To Operator == The equal-to operator is indicated by an
expression, followed by a double equal sign, "==", followed by an
expression. There may be no white space between the two equal signs.
The result is an expression of type character which has a non-zero
(true) value if the first expression is algebraically equal to the
second expression, and a zero (false) value otherwise.

Not Equal Operator != The not-equal operator is indicated by an
expression, followed by an exclamation mark equal character
combination, "!=", followed by an expression. There may be no white
space between the exclamation mark and the equal sign. The result is
an expression of type character which has a non-zero (true) value if
the first expression is algebraically unequal to the second
expression and a zero (false) value otherwise.

C.6.20

BITWISE AND
The bitwise And operator evaluates left to right.

Bitwise And Operator & The bitwise And operator is indicated by an
expression, followed by an ampersand, "&", followed by an
expression. The result is an expression whose value is the bitwise
And of the two expressions. Both expressions must be of integral
type.

BITWISE EXCLUSIVE OR
The bitwise exclusive Or operator evaluates left to right.

Bitwise Exclusive Or operator - The bitwise exclusive or operator is
indicated by an expression, followed by a caret, "-", followed by an
expression. The result is an expression whose value is the bitwise
exclusive Or of the two expressions. Both expressions must be of
integral type.

BITWISE OR
The bitwise Or operator evaluates left to right.

Bitwise Or Operator | The bitwise Or operator is indicated by an
expression, followed by a vertical bar, "|", followed by an
expression. The result is an expression whose value is the bitwise
Or of the two expressions. Both expressions must be of integral
type.

LOGICAL AND
The logical And operator evaluates left to right.

Logical And operator && The logical And operator is indicated by an
expression, followed by a double ampersand, "&&", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if both expressions had non-zero values, and
a zero (false) value otherwise. All Logical-And expressions are
evaluated in short circuit mode. That is, the expression is
evaluated left to right and, if the first expression has a zero
value, then the second expression is not evaluated.

LOGICAL OR
The logical Or operator evaluates left to right.

Logical Or Operator || The logical or operator is indicated by an
expression, followed by double vertical bars, "||", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if either of the expressions has a non-zero
value, and a zero (false) value otherwise. All Logical-Or
expressions are evaluated in short circuit mode. That is, the
expression is evaluated left to right and, if the first expression
has a non-zero value, then the second expression is not evaluated.

C.6.21

CONDITIONAL EXPRESSION
The conditional expression evaluates right to left.

Conditional operator ?: The conditional expression operator, a
trinary operator, is indicated by an expression, followed by a
question mark, "?", followed by an expression, followed by a colon,
":", followed by an expression. If the first expression evaluates to
a non-zero value, the second expression is evaluated; otherwise the
third expression is evaluated. If the second and third expressions
are of different type, the usual arithmetic conversion conventions
are applied to make the types identical. The resultant expression
has the same type and value as the evaluated expression.

ASSIGNMENT OPERATORS
Assignment operators evaluate right to left.

Assignment Operator = The assignment operator is indicated by an
lvalue, followed by an equal sign, "=", followed by an expression.
The lvalue's old value will be replaced by the value of the
expression. The result is an expression with a type and value the
same as that of the lvalue.

Update Assignment 0perator <binary operator >= The update assignment
operator is indicated by an lvalue, followed by a binary
operator-equal sign character combination (for example +=, -=, *=,
/=, %=, >>=, <<=, &=, ^=, or |=), followed by an expression. There
may be no white space between the binary operator and the equal
sign. The effect of
 <lvalue> op= <expression>
is identical to
 <lvalue> = <lvalue> op <expression>
except that the lvalue is evaluated only once. The result is an
expression with the same value and type as that of the lvalue.

COMMA
The comma operator evaluates left to right.

Comma Operator , The comma operator is indicated by an expression,
followed by a comma, ",", followed by an expression. Each expression
is evaluated from left to right. The resultant expression has the
type and value of the second expression.

STATEMENTS

Statements include the set of all expressions along with various
constructs which control program flow. Statements are executed
sequentially unless the program flow has been altered by one of the
program flow control statements.

EXPRESSION STATEMENT
Any expression may be used as a statement if it is terminated by a
semicolon. The resultant value of the expression has no effect.
Presumably the expression will have some side effect, such as
altering a memory location as is done in an assignment expression.

C.6.22

An expression statement which has no side effects is flagged as an
error by the Compiler.

COMPOUND STATEMENT
A compound statement, also called a block, consists of a left brace,
"(", followed by zero or more data declarations, followed by zero or
more statements, followed by a right brace, ")". A block has the
effect of "bracketing" a group of statements so that they become,
for syntactical purposes, a single statement. Thus the compound
statement may be used anywhere any other statement may be used. All
data declared inside the block is local to the block unless
specified as being external.

CONDITIONAL STATEMENT
The conditional statement has two forms. One form is the following:
the keyword "if", followed by a set of parentheses containing an
expression, followed by a statement. The expression is evaluated
and, if its resultant value is non-zero, then the statement will be
executed; otherwise it will not be executed. The other form of the
conditional statement consists of the keyword "if", followed by a
set of parentheses containing an expression, followed by a
statement, followed by the keyword "else", followed by a statement.
The expression is evaluated and, if its resultant value is non-zero,
then the first statement is executed; otherwise the second statement
is executed.

WHILE STATEMENT
The while statement is indicated by the keyword "while", followed by
a set of parentheses containing an expression, followed by a
statement. The expression will be evaluated repeatedly until it
evaluates to a zero value with the statement being executed after
each non-zero evaluation of the expression. If the expression
evaluates to zero initially, then the statement will not be executed
at all.

DO STATEMENT
The do statement is indicated by the keyword "do", followed by a
statement, followed by the keyword "while", followed by a set of
parentheses containing an expression. The statement is executed
repeatedly, with the expression being evaluated after each execution
of the statement, until the expression evaluates to zero. The
statement is always executed at least once.

FOR STATEMENT
The for statement is indicated by the keyword "for", followed by an
open paren, "(", followed by an optional expression, followed by a
semicolon, ";", followed by an optional expression, followed by a
semicolon, ";", followed by an optional expression, followed by a
close paren, ")", followed by a statement. The first expression will
be evaluated exactly once. The second expression will be evaluated
repeatedly until it evaluates to a zero value, with the statement
being executed and the third expression being evaluated after each
non-zero evaluation of the second expression. Notice that all three
of the expressions are optional. If the second expression is omitted

C.6.23

it will be assumed to be an expression which always evaluates to a
1, thus making the for loop execute forever. The effect of omitting
the first or the third expression is simply that there will be
nothing to evaluate in their respective positions.

SWITCH STATEMENT
The switch statement is indicated by the keyword "switch", followed
by an expression enclosed in parentheses, followed by a statement.
The expression is evaluated and cast to type integer. The resultant
value is then matched against any case labels in the statement
portion of the switch. If a match is found, execution will be
resumed at the location where the case label was defined. If no
match is found, but there is a default prefix in the statement
portion of the switch statement, then execution will continue at the
location following the default prefix; otherwise no part of the
statement portion of the switch will be executed.

CASE LABEL STATEMENT
The case label may only appear in the statement portion of a switch
statement. It is indicated by the keyword "case", followed by a
constant expression, followed by a colon ":", followed by a
statement. Its effect is to mark the statement as a possible entry
point in a switch statement.

DEFAULT STATEMENT
The default statement may only appear in the statement portion of a
switch statement. It is indicated by the keyword "default", followed
by a colon, ":", followed by a statement. Its effect is to mark the
statement as the default entry point in a switch statement. This
entry is taken when none of the case labels matches the expression
in the switch statement. The default statement may appear no more
than once in any given switch statement.

BREAK STATEMENT
The break statement is indicated by the keyword "break", followed by
a semicolon, ";". The break statement causes termination of the
smallest enclosing while, do, for, or switch statement. Control
passes to the statement following the terminated statement.

CONTINUE STATEMENT
The continue statement is indicated by the keyword "continue",
followed by a semicolon, ";". The continue statement is permitted
only in while, do, and for statements. In each of these statements
the continue statement causes immediate completion of the statement
portion of the above mentioned looping statements. The effect is
that the current iteration of the looping statement terminates and
execution continues at the point in the looping statement which is
normally executed when the loop completes an iteration.

RETURN STATEMENT
The return statement is indicated by the keyword "return",
optionally followed by an expression, followed by a semicolon, ";".
The return statement causes a function to return control to its
caller. If the optional expression is included, it will be evaluated

C.6.24

and its value will be the return value of the function; otherwise
the function's return value is undefined. The return statement is
optional; there is an implicit "return" statement at the end of
every function body.

GOTO STATEMENT
The goto statement is indicated by the keyword "goto", followed by
an identifier followed by a semicolon, ";", where the identifier is
a label appearing on a label statement which exists in the same
function as the goto statement. The goto statement causes control to
be transferred to the statement marked by the label identifier. The
target label must appear in the same function as the goto.

LABEL STATEMENT
The label statement is indicated by an identifier, followed by a
colon, ":", followed by a statement. Its effect is to mark a
statement as a possible destination for a goto statement.

NULL STATEMENT
The null statement is indicated by a lone semicolon, ";". It has no
effect except to take up the place of a statement. It may be placed
anywhere a statement is permitted.

C.6.25

C.6.26

APPENDICES

This section contains miscellaneous reference information which may
be useful to the programmer.

 Appendix A Introl-C / Standard C C.A.1

 Appendix B Data Type Conversions C.B.1

 Appendix C 6809-Specific Aspects of the Compiler C.C.1

1.1

1.2

APPENDIX A

INTROL-C / STANDARD C

The following differences exist between Introl-C and "standard C" as
it is defined in the Kernighan and Ritchie book, "The C Programming
Language".

OMMISSIONS

1) The current release of Introl-C does not support fields.

2) The current release of introl-C does not support the double data
type.

3) The current release of Introl-C does not support the #line and
#if preprocessor directives (all other directives, including #ifdef
and #ifndef, are supported, however).

EXTENSIONS

4) Nesting of comments is permitted in Introl-C. Thus large sections
of code may be "commented out" by simply bracketing the code segment
with /* and */.

5) Introl-C provides separate name spaces for all structure and
union member names, allowing the use of identical names in different
struct and union declarations.

6) Introl-C does not permit the use of the obsolete
assignment-update operator in which the operator follows the equal
sign. Thus x=-l is not identical to x-=l in Introl-C as it may be in
some other implementations of C.

7) Introl-C permits symbols to up to 90 characters in length.

C.A.1

C.A.2

APPENDIX B

DATA TYPE CONVERSIONS

The following describes the result of all conversions, implicit or
otherwise.

char to float: The conversion of a character to type float results
in the value of the character being represented in floating point
format. Characters are unsigned quantities.

char to int: Characters are converted to integers by padding zeros
on the left. In present versions of introl-C characters are
unsigned.

char to long int: Characters are converted to long integers by
padding zeros on the left.

char to short int: Characters are converted to short by padding
zeros on the left.

char to unsigned int: Characters are converted to unsigned by
padding zeros on the left.

char to pointer: Characters are converted to pointer by padding
zeros on the left.

float to char: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a character. If the value is larger than that which
can be represented by a character, then the result is the maximum
value possible for a character. If the value is smaller than that
which can be represented by a character, the result is set to the
minimum value possible for a character.

float to int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a signed integer. If the value is larger than that
which can be represented by an integer, then the result is the
maximum value possible for an integer. If the value is smaller than
that which can be represented by an integer, the result is set to
the minimum value possible for an integer.

float to long int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a long integer. If the value is larger than that
which can be represented by a long integer, then the result is the
maximum value possible for a long integer. If the value is smaller
than that which can be represented by a long integer, the result is
set to the minimum value possible for a long integer.

C.B.1

float to short int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a short integer. If the value is larger than that
which can be represented by a short integer, then the result is the
maximum value possible for a short integer. If the value is smaller
than that which can be represented by a short integer, the result is
set to the minimum value possible for a short integer.

float to unsigned int: The fractional part of the float is truncated
to produce an integral value (truncation is always toward 0). This
is the resultant value if the value is within the range which can be
represented by an unsigned integer. If the value is larger than that
which can be represented by an unsigned integer, then the result is
the maximum value possible for an unsigned integer. If the value is
smaller than that which can be represented by an unsigned integer
the result is set to the minimum value possible for an unsigned
integer.

float to pointer: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a pointer. If the value is larger than that which can
be represented by a pointer, then the result is the maximum value
possible for a pointer. If the value is smaller than that which can
be represented by a pointer, the result is set to the minimum value
possible for a pointer.

int to char: Integers are converted to characters by truncating the
excess high order bits.

int to float: The conversion of an integer to type float results in
the value of the integer represented in a floating point format.

int to long int: Integers are converted to long integers by sign
extension.

int to short int: Integers are converted to short integers by
truncating any excess high order bits.

int to unsigned int: The conversion from integer to unsigned integer
is conceptual and no actual change in the bit pattern takes place.
Thus the value of a positive integer converted to unsigned integer
does not change while the value of a negative integer appears as a
large unsigned integer.

int to pointer: The conversion from integer to pointer is conceptual
and no actual change in the bit pattern takes place.

long int to char: Long integers are converted to type character by
truncating the excess high order bits.

long int to float: The conversion of a long integer to type float
results in the value of the long integer represented in floating

C.B.2

point format. There may be some loss of precision for large values
because the number of bits used to represent the long (31 not
including sign) is larger than the number of bits used to represent
the mantissa of the float (24).

long int to int: Long integers are converted to type integer by
truncating any excess high order bits.

long int to short int: Long integers are converted to short integers
by truncating the excess high order bits.

long int to unsigned int: Long integers are converted to unsigned
integers by truncating the excess high order bits.

long int to pointer: Long integers are converted to pointer by
truncating the excess high order bits.

short int to char: Short integers are converted to character by
truncating any excess high order bits.

short int to float: The conversion of a short integer to type float
results in the value of the short represented in floating point
format.

short int to int: When short integers are converted to type integer,
any excess high order bit positions in the result are filled by sign
extending the short integer.

short int to long int: When short integers are converted to type
long integer, any excess high order bit positions in the result are
filled by sign extending the short integer.

short int to unsigned int: When short integers are converted to type
unsigned integer, any excess high order bit positions in the result
are filled by sign extending the short integer.

short int to pointer: When short integers are converted to pointer,
any excess high order bit positions in the result are filled by sign
extending the short integer.

unsigned int to char: Unsigned integers are converted to type
character by truncating the excess high order bits.

unsigned int to float: The conversion of an unsigned integer to type
float results in the value of the unsigned integer represented in
floating point format.

unsigned int to int: The conversion from unsigned integer to integer
is conceptual and no actual change in the bit pattern takes place.
Thus, when an unsigned integer with a value greater than the maximum
integer value is converted to an integer, the result appears as a
negative number.

C.B.3

unsigned int to long int: Unsigned integers are converted to long by
padding zeros on the left.

unsigned int to short int: Unsigned integers are converted to type
short integers by truncating any excess high order bits.

unsigned int to pointer: The conversion from unsigned to pointer is
conceptual and no actual change in the bit pattern takes place.

pointer to char: Pointers are converted to type character by
truncating the high order bits.

pointer to float: The conversion of a pointer to type float results
in the value of the pointer as represented in floating point format.
The value of a pointer is interpreted as an unsigned quantity.

pointer to int: The conversion from pointer to integer is conceptual
and no actual change in the bit pattern takes place.

pointer to long int: Pointers are converted to type long integer by
padding the high order bits with zeros.

pointer to short int: Pointers are converted to short integer by
truncating any excess high order bits.

pointer to unsigned int: The conversion from pointer to unsigned
integer is conceptual and no actual change in the bit pattern takes
place.

C.B.4

APPENDIX C

INTROL-C/6809 COMPILER
DATA, REGISTER USAGE.

AND PARAMETER PASSING CONVENTIONS

DATA

The value of char data is represented in an eight bit (one byte)
memory location. A char is an unsigned small integer that can
contain a value from zero to 255.

Int variables are contained in two bytes (16 bits) and represent a
two's complement value that may be in the range -32768 to +32767.

All signed integers are represented in two's complement form.

Short is a synonym for int in this implementation.

Unsigned (or unsigned int) variables are contained in two bytes (16
bits) and may contain values in the range 0 to 65535.

Long (or long int) variables are contained in four bytes (32 bits)
and contain values in the range -2147483648 to 2147483647.

Floats are contained in four bytes (32 bits) and contain values as
defined by the IEEE standard for 32 bit floating point numbers. (See
also the discussion on floats in the "Definition of Introl-C"
section of this manual.)

A structure has a size exactly equal to the sum of the sizes of its
parts. There are no unused spaces in structures. For example the
structure declaration:

 struct
 {
 int a;
 char b;
 unsigned d;
 char e[2];
 long f;
 float g;
 } f;

will create the following memory allocation (assume the byte numbers
represent offsets from the beginning of structure f)

 Byte Contents
 0,1 int value of member a. (Byte 0
 is the high byte.)
 2 Char value of member b.
 3,4 Unsigned value of member d.
 5 e[0]
 6 e[1]

C.C.l

 7,8, 9, 10 Long int value of member f.
 (Byte 7 is the high byte.)
 11,12,13,14 The first, most significant bit of
 the first byte is the sign of the
 float. The next seven bits of the
 first byte and the first bit of the
 next byte comprise the biased
 exponent. The remaining 23 bits
 comprise the mantissa and make up
 the remainder of the second byte as
 well as the next two bytes.

A union is the size of its largest member. All unions pack towards
the left. This means that a char variable coexisting with an int in
a union will actually be allocated the byte representing the high
byte of the integer's value.

An array has the size of one of its elements multiplied by the given
dimension of the array. An array declaration such as:

 char a[10];

defines "a" to be a character array with ten elements and therefore
ten bytes long.

REGISTER USAGE

The 6809 has two eight bit accumulators (usable as a single sixteen
bit register), three general purpose index registers, a hardware
stack pointer and a program instruction counter. These registers are
allocated by the Compiler as follows.

The B accumulator is used as the char accumulator for arithmetic
expressions that involve char values. The D register (A:B) is used
as the int and unsigned accumulator. A programmer is free to destroy
these registers in a user written assembly language function. The B
register is used to return character data from a function; the D
register is used to return int, or unsigned values; and both the U
and D registers are used to return long int. or float, with U
containing the most significant half of the number.

The X, Y, and U registers are used in addressing operands. The
contents of the X and U register may be destroyed by an assembly
language routine without adverse effect. The Y register may also be
modified, but only if the user is not generating position
independent code. When generating position independent code, the
Compiler assumes the Y register will in all cases contain the
address of the beginning of its external and static data area. In
such case, a program initialization routine must initialize the Y
register before the first call to "main()".

The hardware stack pointer (SP) should be preserved through a
function. The SP points to an area of read/write memory that has
several uses: (1) The stack area is used to preserve a record of the

C.C.2

execution history of the program, so that a function always "knows"
who called and can return to the same place; (2) the stack is used
to save the state of the processor in the event of an interrupt; (3)
the stack is used to pass parameters to a function: and (4) the
stack is used to allocate local variable space for a function. These
first two functions of the stack are determined by the 6809 hardware
and can be pursued further, if desired, by obtaining a reference
book on the microprocessor. The third and fourth functions of the
stack (parameter passing and local variable allocation) are
described in the following paragraphs.

PARAMETER PASSING CONVENTIONS

When a function is called in this implementation the second through
the last parameters are pushed on the stack in reverse order (last
parameter first). The first parameter is loaded into the D
accumulator. If the first parameter is a long or float, the high
order word is loaded into the U register. Char values are converted
to int when passed as a parameter. Either the jump to subroutine
(JSR) or the long branch to subroutine (LBSR) instruction is then
used to call the desired function. After the function returns, the
area in the stack used for parameters is freed. The return value of
the function is assumed to be in the U and D registers, where U is
assumed to hold the most significant 16 bits of a returned long or
float value while the D register holds the least significant 16
bits. Integer-sized data is returned in the D register. Character
data is returned in the low order 8 bits of the D register (the B
register). When returning character type data, it is a good idea to
clear the upper 8 bits of the D register (the A register).

A function call such as:

 f(a,b,1+2)

would generate the 6809 code with the following meaning:

 push (the value of 1+2)
 push (the value of variable b)
 load (the value of variable a)
 LBSR f
 deallocate 4 bytes from the SP (total pushed
 parameter size)

When the function is entered, the stack frame looks like this:

 Stack Contents Offset
 other data on the stack SP+6
 the value of 1+2 SP+4
 the value of variable b SP+2
 SP -> return address SP+0

 D = value of variable a

C.C.3

LOCAL DATA

If a function needs auto storage locations it allocates them below
the return address of the stack frame described above. Suppose the
function f() has the following declaration:

 f(x,y,z)
 int x,y,z;
 {
 char a;
 int b;
 .
 .
 .

The function would expect its parameters to be in the stack frame as
described above. The function will often save parameter 1 (passed in
the D register) in the stack just under the return address. After
entering the function, the stack pointer would be modified to allow
the storage of a and b below the return address of the stack frame.
The new stack frame would look like this:

 Stack Contents offset
 other data on the stack SP+11 ...
 the value of parameter z SP+9
 the value of parameter y SP+7
 return address SP+5
 the value of parameter x SP+3
 variable b SP+l
 SP -> variable a SP+0

Note that char variables use only one byte as auto variables. The
only time they are automatically given two bytes is when passed as
parameters. The function has the responsibility of "cleaning up"
after itself by removing the allocation of variables a and b from
the stack. Allocating memory from the stack is accomplished by
subtracting the desired number of bytes from the SP and using the
area between the new SP and the old SP. Deallocating memory from the
stack is the opposite: add the number of bytes to deallocate to the
SP.

There are two important things to remember about the stack pointer.
The first is that it must always point to the return address of the
caller when the function is complete. The second is that the stack
pointer must always point to an area of memory large enough to hold
all the auto variables of a series of functions at their deepest
nesting level, allow room for the parameters and return addresses,
leave space for any temporary variables that might be used on the
stack, and allow room for saving the system state if the programs
are to be run in an interrupt environment. In other words, the stack
is very busy so make the stack area big enough!

C.C.4

 INDEX
abstract declarators 6.13 #endif directive 6.4
addition operator 6.19 equ 5.9
additive operators 6.19 equal-to operator 6.20
address operator 6.18 equality operators 6.20
addressing operators 6.16 err 5.10
and operator, bitwise 6.21 error messages, compiler 4.7
and operator, logical 6.21 escape characters 6.2
array operator 6.17 exclusive or operator, bitwise 6.21
array type 6.8 explicit conversions 6.15
array, multi-dimensional 6.8 export 5.10
assembly language text file 3.2 expression statement 6.23
assignment operator 6.23 expression, conditional 6.22
assignment operator, update 6.23 expressions 6.13
assignment operators 6.23 expressions, constant 6.15
auto variables 6.6 extern variables 6.5
backspace 6.2 fcb 5.10
binary operators 6.15 fcc 5.11
bitwise and operator 6.21 fdb 5.11
bitwise exclusive or operator 6.21 file, assembly language text 3.2
bitwise Not operator 6.17 file, relocatable object 3.2
bitwise or operator 6.21 float to integral conversion 6.14
blanks 6.1 floating point constant 6.3
break statement 6.25 floating point type 6.8
carr-iage return 6.2 for statement 6.24
case label statement 6.25 form feed 6.2
cast 6.13 function definition 6.12
cast operator 6.18 function operator 6.16
Character constants 6.2 function type 6.8
character type 6.7 functions 6.8
comma operator 6.23 goto statement 6.26
comment nesting 6.1 greater-than operator 6.20
comments 6.1 greater-than-equal operator 6.20
compiler 4.1 hexadecimal constants 6.2
compiler error messages 4.7 identifier length 6.1
compiler options 4.2 identifiers 6.1
compound statement 6.24 #ifdef directive 6.4
conditional expression 6.22 #ifndef directive 6.5
conditional operator 6.23 implicit conversions 6.14
constant expressions 6.15 import 5.12
constant, floating point 6.3 #include directive 6.5
constants 6.2 increment operator 6.17
constants, character 6.2 indirection operator 6.18
constants, hexadecimal 6.2 +inf 6.8
constants, integer 6.2 initializers 6.11
constants, long integer 6.2 integer constants, long 6.2
continue statement 6.25 integer type 6.7
conversion, float to integral 6.14 integer type, long 6.7
conversion, integral to float 6.15 integer type, short 6.7
conversion, integral to integral 6.15 integer type, unsigned 6.7
conversions 6.14 integral to float conversion 6.15
conversions, explicit 6.15 integral to integral conversion 6.15
conversions, implicit 6.14 keywords 6.1
data conventions 6.6 label Statement 6.26
data declarations 6.10 label statement, case 6.25
declarations 6.10 left shift operator 6.19
declarations, data 6.10 less-than operator 6.20
declarators, abstract 6.13 less-than-equal operator 6.20
decrement operator 6.18 lexical conventions 6.1
default statement 6.25 lib 5.12
#define directive 6.3 list 5.12
definition of Introl-C 6.1 loc 5.13
definition, function 6.12 logical and operator 6.21
directive, #define 6.3 logical not operator 6.17
directive, #else 6.4 logical or operator 6.21
directive, #endif 6.4 long integer constants 6.2
directive, #ifdef 6.4 long integer type 6.7
directive, #ifndef 6.5 lvalues 6.15
directive, #include 6.5 macro, preprocessor 6.4
division operator 6.19 member name spaces 6.9
do statement 6.24 modulo operator 6.19
#else directive 6.4 multidimensional array 6.8

I.1

multiplication operator 6.19 relational operators 6.20
multiplicative operators 6.19 relocatable object file 3.2
NaN 6.8 return statement 6.25
newline 6.2 right shift operator 6.19
newlines 6.1 rmb 5.14
nolist 5.13 scope, member names 6.9
not-equal operator 6.20 set 5.14
null statement 6.26 shift operator 6.19
object file, relocatable 3.2 shift operator, left 6.19
octal constants 6.2 shift operator, right 6.19
offset 5.13 short integer type 6.7
opcodes 5.6 sizeof 6.13
operator precedence 6.16 sizeof operator 6.18
operator, addition 6.19 statement, break 6.25
operator, address 6.18 statement, case label 6-.25
operator, array 6.17 statement, compound 6,24
operator, assignment 6.23 statement, continue 6.25
operator, bitwise and 6.21 statement, default 6.25
operator, bitwise exclusive or 6.21 statement. do 6.24
operator, bitwise Not 6.17 statement, expression 6.23
operator, bitwise or 6.21 statement, for 6.24
operator, cast 6.18 statement, goto 6.26
operator, comma 6.23 statement, label 6.26
operator, conditional 6.23 statement, null 6.26
operator, decrement 6.18 statement, return 6.25
operator, division 6.19 statement, switch 6.25
operator, equal-to 6.20 statement, while 6.24
operator, function 6.16 statements 6.23
operator, greater-than 6.20 static variables 6.7
operator, greater-than-equal 6.20 storage class 6.6
operator, increment 6.17 storage class, typedef 6.7
operator, indirection 6.18 strings 6.3
operator, left shift 6.19 structure member name spaces 6.9
operator, less-than 6.20 structure member operator 6.17
operator, less-than-equal 6.20 structure member pointer operator 6.17
operator, logical and 6.21 structure, type 6.9
opertor, logical not 6.17 subtraction operator 6.19
opertor, logical or 6.21 switch statement 6.75
opertor, modulo 6.19 syn 5.14
opertor, multiplication 6.19 tab 6.2
operator, not-equal 6.20 Theory Of Operation 3.1
operator, right shift 6.19 trinary operators 6.15
operator, shift 6.19 type 6.7
operator, sizeof 6.18 type structure 6.9
operator, structure member 6.17 type, array 6.8
operator, structure member pointer 6.17 type, character 6.7
operator, subtraction 6.19 type, floating point 6.8
operator, unary minus 6.18 type, function 6.8
operator, update assignment 6.23 type, integer 6.7
operators 6.16 type, long integer 6.7
operators, additive 6.19 type, pointer 6.9
operators, addressing 6.16 type, short integer 6.7
operators, assignment 6.23 type, union 6.9
operators, binary 6.15 type, unsigned integer 6.7
operators, equality 6.20 typedef.storage class 6.7
operators, multiplicative 6.19 unary minus operator 6.18
operators, relational 6.20 unary operators 6.15, 6.17
operators, trinary 6.15 tundef 6.6
operators, unary 6.1 5. 6.17 underscore 6.1
options, compiler 4.2 union type 6.9
or operator, bitwise 6.21 unsigned integer type 6.7
or operator, logical 6.21 update assignment operator 6.23
pointer type 6.9 variables, auto 6.6
pointers 6.9 variables, extern 6.6
preprocessor directives 6.3 variables, register 6.6
preprocessor macro 6.4 variables, static 6.7
preceoence. operator 6.16 while statement 6.24
register variables 6.5 white space 6.l

I.2

FC6809 INTROL-C

STANDARD LIBRARY
REFERENCE MANUAL

(FLEX)

The contents of this manual have been carefully reviewed and are
believed to be entirely correct. However, Introl Corp. assumes no
liability for inaccuracies.

The software described in this manual is proprietary and is
furnished under a license agreement from Introl Corp. The software
and supporting documentation may be used and/or copied only in
accordance with said license agreement.

INTROL-C is a registered trademark of Introl Corp.
FLEX and UniFlex are trademarks of Technical Systems Consultants, Inc.
OS9 is a trademark of Microware Systems Corp.
UNIX is a trademark of Bell Laboratories

Introl Corp.
647 W. Virginia St.

Milwaukee, WI 53204 USA

tel. (414) 276-2937

Copyright 1983 Introl Corp.
All Rights Reserved

 FC6809 STANDARD LIBRARY

This manual describes each of the standard library routines
supported by the FC6809 Introl-C Standard Library. The FC6809
Standard Library is usable with the Introl "fld' Loader for
producing programs that are compatible with, and executable under,
the Flex operating system. Note that Introl-C uses system call names
which may differ from those used by your operating system. Those
system calls which perform a function which is analogous to a
recognized UNIX system call have been given the corresponding UNIX
name rather than the name used by the particular operating system.
The library functions appear in alphabetical order in this-manual.

 IMPORTANT NOTE: The majority of functions contained in the
 Standard Library have been pre-assigned a module "class number"
 of zero (0). Several "non-zero" class Standard Library modules
 are also included for user convenience, however, and are
 identified in the Appendix at the end of this Standard Library
 Manual. In general, these non-zero class modules are alternate
 forms of identically named class zero modules that exist in the
 library, modified to fit specific programming applications.

The following is a list of the functions included in this manual.

FUNCTION DESCRIPTION PAGE

abs - integer absolute value 1.1
alloc - allocate memory 2.1
atof - convert string to float 3.1
atoi - convert string to integer 4.1
atol - convert string to long 5.1
cprep - prepare environment for C program 6.1
cstart - runtime preparation routine 7.1
ecvt - float to string conversion 8.1
execl - execute a program 9.1
exit - exit a program with file cleanup 10.1
_exit - exit a program without file cleanup 11.1
_extend - extend float 12.1
fclose - close file 13.1
fcvt - float to string conversion 14.1
fgets - read file into string 15.1
_filespec - Build file specification 16.1
_fms - Call to FLEX FMS entry point 17.1
fopen - open a file 18.1
fprintf - formatted output conversion 19.1
fputs - write a string to a file 20.1
free - free memory 21.1
fscanf - formatted input conversion 22.1
getc - get the next character from a file 23.1
getchar - get a character from the standard input 24.1
_getchr - Call FLEX GETCHR entry point. 25.1
gets - read input into string 26.1

0.1

index - find first occurrence of character 27.1
isalpha - test for alpha character 28.1
isdigit - test for digit 29.1
islower - test for lower case 30.1
isspace - test for white space 31.1
isupper - test for upper case 32.1
itoa - convert integer to ascii string 33.1
longjmp - non-local goto 34.1
malloc - allocate memory 35.1
max - return the maximum of two values 36.1
min - return the minimum of two values 37.1
modf - return fractional part of float 38.1
movmem - copy a block of memory from one-location to another 39.1
printf - formatted output conversion 40.1
putc - write a character to a file 41.1
putchar - write a character to the standard output 42.1
_putchr - Call FLEX PUTCHR entry point. 43.1
puterr - write a char to the standard error output (STDERR) 44.1
puts - write a string to standard output 45.1
reverse - reverse a string in place 46.1
rewind - reset specified file to beginning 47.1
rindex - find last occurrence of character 48.1
sbrk - allocate memory 49.1
scanf - formatted input conversion 50.1
_setext - Call FLEX SETEXT entry point 51.1
setjmp - non-local goto 52.1
sprintf - formatted output conversion 53.1
sscanf - formatted string conversion 54.1
strcat - copy string 55.1
strcmp - compare strings lexicographically 56.1
strcpy - copy string 57.1
strlen - return string length 58.1
strncat - copy string 59.1
strncmp - compare strings lexicographically 60.1
strncpy - copy string 61.1
strsave - save string in memory 62.1
tolower - convert to lower case 63.1
toupper - convert to upper case 64.1
uldiv - unsigned long integer divide 65.1
ulmcd - unsigned long modulo operation 66.1
ulmul - unsigned long multiply 67.1
_unext - unextend float 68.1
ungetc - push character back on input stream 69.1
ungetchar - push character back on standard input stream 70.1
unlink - delete file 71.1

0.2

NAME
 abs - integer absolute value

SYNOPSIS
 int abs(i)
 int i;

DESCRIPTION
 abs returns the absolute value of its integer operand.

DIAGNOSTICS

SEE ALSO

NOTES

1.1

NAME
 alloc - allocate memory

SYNOPSIS
 char *alloc(size)
 int size;

DESCRIPTION
 alloc will attempt to allocate a block of memory whose size is
 given by the argument. If it is successful it returns a pointer
 to that memory otherwise it returns NULL.

DIAGNOSTICS
 Returns NULL if the memory could not be allocated.

SEE ALSO
 free(), sbrk()

NOTES
 Alloc is an obsolete name for malloc(). It simply calls
 malloc() and returns.

2.1

NAME
 atof - convert string to float

SYNOPSIS
 float atof(cptr)
 char *cptr;

DESCRIPTION
 The atof function converts a string into a float which is then
 used as the return value of the function. The string should be
 null terminated although atof will stop reading the string as
 soon as an illegal character is reached. After ignoring
 preceding blanks the atof routine will convert as much of the
 string as conforms to normal floating point constant format to
 a floating point number. It will stop at the first character
 which is inconsistent with that format. If no floating point
 constant is found a 0 is returned.

 A floating point constant consists of an integer part, a
 decimal point, a fractional part, and an exponential part. The
 integer and fractional parts may each consist of a string of
 one or more digits. The exponential part consists of an 'e' or
 'E', followed by an optionally signed integer exponent. Either
 the integer or the fractional part (but not both) may be
 missing; either the decimal point or the exponential part (but
 not both) may be missing.

DIAGNOSTICS

SEE ALSO
 atoi(), atol()

NOTES
 Presently it is permitted to have spaces between the 'e' or 'E'
 and the first character of the integer representing the
 exponent.

3.1

NAME
 atoi - convert string to integer

SYNOPSIS
 int atoi(ptr)
 char *ptr;

DESCRIPTION
 Atoi's argument is a pointer to char which is assumed to point
 to a null terminated string which contains the ASCII
 representation of some integer number. The atoi function
 converts a string into an int which is the return value. The
 string should be null terminated although atoi will stop
 reading the string as soon as an illegal character is reached.
 After ignoring preceding blanks the atoi routine will convert
 as much of the string as conforms to normal integer constant
 format to an integer number. It will stop at the first
 character which is inconsistent with that format. If no integer
 constant is found a 0 is returned.

 The integer constant format consists of an optional sign,
 followed by one or more digits. There should be no spaces
 interspersed within the number.

DIAGNOSTICS

SEE ALSO
 atof(), atol()

NOTES

4.1

NAME
 atol - convert string to long,

SYNOPSIS
 long atol(cptr)
 char *cptr;

DESCRIPTION
 The atol function converts a string into a long which is the
 return value. The string should be null terminated although
 atol will stop reading the string as soon as an illegal
 character is reached. After ignoring preceding blanks the atol
 routine will convert as much of the string as conforms to
 normal long integer constant format to a long integer. It will
 stop at the first character which is inconsistent with that
 format. If no long integer constant is found a 0 is returned.

 The long integer constant format consists of an optional sign,
 followed by one or more digits. There should be no spaces
 interspersed within the number.

DIAGNOSTICS

SEE ALSO
 atof(), atoi()

NOTES

5.1

NAME
 cprep - prepare environment for C program

SYNOPSIS
 int cprep(argc,argv,eext)
 int argc;
 char **argv;
 char *eext;

DESCRIPTION
 Cprep first prepares the environment for the user C program and
 then call s "main", the usual entry-point to a user program.
 Cprep is usually referenced only from "cstart". The user
 program is not expected to make any explicit reference to this
 routine.

DIAGNOSTICS

SEE ALSO
 cstart

NOTES
 The result of an explicit reference to cprep is undefined.

6.1

NAME
 cstart - runtime preparation routine

SYNOPSIS

DESCRIPTION
 Cstart is a runtime preparation routine which is normally the
 first routine executed by an Introl-C program. Its only
 function is to set up the environment enough to allow the
 function "cprep" to be called. Cprep is a function which
 produces the runtime environment which is-expected by the user
 program. Cstart is included automatically by the linker. It is
 NOT expected that a user program will reference cstart
 explicitly via a function call.

DIAGNOSTICS

SEE ALSO
 cprep()

NOTES
 The result of an explicit reference to cstart is undefined.

7.1

NAME
 ecvt - float to string conversion

SYNOPSIS
 char *ecvt(arg,ndigits,decpt,sign)
 float arg;
 int ndigits;
 int *decpt,*sign;

DESCRIPTION
 This is a formatting routine used by printf for formatting
 floating point numbers in the e format.

 Ecvt returns a pointer to a string which contains ascii
 characters representing a floating point number. The first
 argument is converted to a string whose length is indicated by
 the second argument. The third argument points to a variable in
 which the routine will write the location of the decimal point
 relative to the start of the string (negative numbers indicate
 that the decimal point is to the left of the first character of
 the string). The variable pointed to by the fourth argument is
 set nonzero if the float is negative otherwise it is set to
 zero.

 The string is written in a static data area local to ecvt and
 is overwritten with the next call.

 If the argument passed to ecvt is a legal floating point number
 the string will consist of a series of ascii digits terminated
 by a null. If the argument is out of the legal range for floats
 (as per the IEEE standard) the string will contain "NaN" (Not a
 Number). If the argument is either greater than the maximum or
 less than the minimum allowed for a float the characters "inf"
 (infinity) will be placed in the string (the fourth argument is
 set to indicate positive or negative infinity). The string
 itself contains neither a minus sign nor a decimal point nor a
 base ten exponent.

DIAGNOSTICS

SEE ALSO
 fcvt(), itoa()

NOTES

8.1

NAME
 execl - execute a program

SYNOPSIS
 int execl(cmd,arg0,arg1,...,0)
 char cmd,*arg0,*arg1,.....;

DESCRIPTION
 Execl causes the present program to cease execution and a new
 program to execute. The name of the file to be executed must be
 contained in a string pointed to by the first argument. The
 additional arguments are assumed to be pointers to null
 terminated strings. These pointers will be passed to the
 program to be executed if they appeared as parameters on a
 command call line. The last argument MUST be a zero. The new
 process is given the arguments which follow the first argument
 in the execl call. The second argument of the execl call is the
 FIRST argument passed to the program to be executed (by
 convention referred to as argv(0). The last argument in the
 execl call must always be a zero.

DIAGNOSTICS
 This function NEVER returns.

SEE ALSO

NOTES
 The sum total of lengths of the argument strings (including a
 space to be placed between each argument) must not exceed the
 length of a FLEX line buffer, which is 128 bytes long.

9.1

NAME
 exit - exit a program with file cleanup

SYNOPSIS
 int exit(stat)
 int stat;

DESCRIPTION
 Exit aborts a C program and returns to the operating system.
 The status value is returned to the operating system. Exit also
 flushes any open file buffers and closes all open files before
 exiting.

DIAGNOSTICS

SEE ALSO
 _exit()

NOTES

10.1

NAME
 _exit - exit a program without file cleanup

SYNOPSIS
 int _exit(stat)
 int stat;

DESCRIPTION
 _exit aborts a C program and returns to the operating system.
 The status value is returned to the operating system. The _exit
 routine does not explicitly flush the file buffers.

DIAGNOSTICS

SEE ALSO
 exit()

NOTES

11.1

NAME
 _extend - extend float

SYNOPSIS
 int _extend(f,ef)
 float f;
 struct extflt
 {
 char sign;
 int exp;
 long mantissa
 } *ef;

DESCRIPTION
 _extend extends a floating point number (its first argument)
 and stores the result in the structure pointed to by the second
argument. The first element of the structure contains the sign
 bit of the number, the second element contains the unbiased
 exponent, and the thirs element contains the mantissa.

DIAGNOSTICS

SEE ALSO
 _unext()

NOTES

12.1

NAME
 fclose - close file

SYNOPSIS
 #include "stdio.h"
 int fclose(fp)
 FILE *fp;

DESCRIPTION
 Fclose will close the file indicated by its argument. The
 argument must be a file pointer which was previously returned
 from an fopen unless it is STDIN, STDOUT, or STDERR. If the
 file has been opened for writing, fclose will automatically
 flush the remaining contents of the buffer.

DIAGNOSTICS
 fclose will return ERROR if the file could not be closed. The
 external variable "errno" will contain the error code which was
 returned by the operating system..

SEE ALSO
 fgets(), fopen(), fprintf(), fputs(), fscanf(), getc()

NOTES

13.1

NAME
 fcvt - float to string conversion

SYNOPSIS
 char *fcvt(arg,ndigits,decpt,sign)
 float arg;
 int ndigits;
 int *decpt,*sign;

DESCRIPTION
 This is a formatting routine used by printf for formatting
 floating point numbers in the f format. It is similar to the
 "ecvt" routine except that the correct digit will be rounded as
 demanded by Fortran F-format for the number of digits indicated
 by the second argument

 Fcvt returns a pointer to a string which contains ascii
 characters representing a floating point number. The first
 argument is converted to a string whose length is indicated by
 the second argument. The third argument points to a variable in
 which the routine will write the location of the decimal point
 relative to the start of the string (negative numbers indicate
 that the decimal point is to the left of the first character of
 the string). The variable pointed to by the fourth argument is
 set nonzero if the float is negative; otherwise it is set to
 zero.

 The string is written in a static data area local to fcvt and
 is overwritten with the next call.

 If the argument passed to fcvt is a legal floating point number
 the string will consist of a series of ascii digits terminated
 by a null. If the argument is out of the legal range for floats
 (as per the IEEE standard) the string will contain "NaN' (Not a
 Number). If the argument is either greater than the maximum or
 less than the minimum allowed for a float the characters "inf"
 (infinity) will be placed in the string (the fourth argument is
 set to indicate positive or negative infinity). The string
 itself contains neither a minus sign nor a decimal point nor a
 base ten exponent.

DIAGNOSTICS

SEE ALSO
 ecvt(), itoa()

NOTES

14.1

NAME
 fgets - read file into string

SYNOPSIS
 #include "stdio.h"
 int fgets (s,n,fp)
 char *S;
 int n;
 FILE *fp;

DESCRIPTION
 Fgets will read a line of up to n characters from the file
 pointed to by its third argument into the area pointed to by
 its first argument. Its third argument must be a file pointer
 previously returned by an fopen call. Fgets returns a pointer
 to the start of the line read or NULL if for some reason no
 line could be read. The function reads the number of characters
 indicated by its second argument or until an end of line is
 encountered, whichever comes first. The trailing newline IS
 included in the line read.

DIAGNOSTICS
 fgets will return NULL if the file could not be read from; this
 is usually interpreted as an End Of File.

SEE ALSO
 fclose(), fflush(), fopen(), fprintf(), fputs(), fscanf(),
 getc(), gets()

NOTES
 If there is a trailing newline character read from the file
 fgets will include it in the string whereas gets will not.

15.1

NAME
 _filespec - Build file specification

SYNOPSIS
 *include "stdio.h"
 int _filespec(n,fp,ext)
 char *n;
 FILE *fp;
 char ext;

DESCRIPTION

 The _filespec function builds a file specification in the fcp
 pointed to by the second argument. The first argument points to
 a file name string that may contain a drive specifier and an
 extension. If no drive is given in the name, the system working
 disk is assumed. If no extension is given in the name, the
 value of the third argument is used in a call to the FLEX
 routine SETEXT to set the default extension. (see "The FLEX
 Advanced Programmers Guide" for more details on the ext
 parameter.)

DIAGNOSTICS
 Returns ERROR if a valid file specification could not be made.

SEE ALSO

NOTES
 This routine is used internally by some of the file routines
 and is not guaranteed to be supported in the future.

16.1

NAME
 _fms - Call to FLEX FMS entry point

SYNOPSIS
 #include "stdio.h"
 int _fms(fp,c)
 FILE *fp;
 char C;

DESCRIPTION
 This is a short assembly language routine that allows a C
 program to call the FLEX FMS entry point. The desired function
 should be placed in fp->f.function (see the flex.h header
 file). The value of the second parameter is placed in the A
 accumulator before the call to the FMS entry point. On return,
 fms returns an integer representing the value of the A
 Accumulator or ERROR.

DIAGNOSTICS
 Returns ERROR if FLEX detected an error in the FMS call.

SEE ALSO

NOTES
 This routine is used internally by some of the file routines
 and is not guaranteed to be supported in the future.

17.1

NAME
 fopen - open a file

SYNOPSIS
 #include "stdio.h"
 FILE *fopen(name,mode)
 char *name,*mode

DESCRIPTION
 Fopen will open the file whose name is pointed to by its first
 argument with the attributes indicated in the string pointed to
 by its second argument. It returns a value of type pointer to
 FILE which must be used as an argument on subsequent references
 to the file.

 The options with which the file is to be opened are specified
 as ASCII characters in the mode string (whose pointer is passed
 as the second parameter). One of the characters in this string
 indicates the mode for which the file will be opened. The
 appropriate modes are:

 r - read: File is opened for read access

 w - write: File is opened for write access

 If neither of these characters appears in the string the file
 is opened for read access. The result of placing more than one
 of these characters in the string is undefined.

 In addition to one of the preceding characters a b may appear
 in the string. The 'b' option indicates that the file is a
 binary file while the absence of a 'b' indicates that the file
 should be opened as a text file.

DIAGNOSTICS
 Fopen will return ERROR if the file could not be opened and the
 external variable "errno" will contain any error code returned
 by the system.

SEE ALSO
 fclose(), fgets(), fprintf(), fputs(), fscanf(), getc()

NOTES
 The current version of fopen returns ERROR when it fails to
 open a file rather than the more common return value of NULL.

18.1

NAME
 fprintf - formatted output conversion

SYNOPSIS
 #include "stdio.h"
 int fprintf(stream,control [,arg])
 FILE *stream;
 char *control;

 DESCRIPTION
 Fprintf is nearly identical to printf except that here the
 output file specification is explicitly given as the first
 argument. All output is sent to the file pointed to by the
 first argument. The parameters to fprintf consist of pointer
 to FILE, followed by a pointer to a null terminated string,
 followed by zero or more arguments. fprintf formats and writes
 the arguments following the control string using the control
 string to direct formatting and conversion. The control string
 may contain normal characters (which are simply copied to the
 output file) and conversion specifications which control the
 writing of the arguments. Each conversion provides information
 used to format its corresponding argument following the control
 string. Conversion specifications begin with a percent
 character (%), perhaps followed by some options and terminated
 by a conversion character. All the options are, of course,
 optional but those that are included must appear in the
 specified order. The legal options (in the order they must
 appear) are as follows:

 Dash (-): indicates that if the number to be written is shorter
 than the specified field length that it should be left
 justified. If this option is omitted the number will be
 right justified.

 Zero (0): indicates that if the number to be written is shorter
 than the specified field length that it should be padded
 with zeros to fill the field length. If this option is
 omitted the field will be padded with blanks.

 Digit string: indicates the minimum field width. The argument
 will be written in a field at least this wide. This field
 may be replaced with a star (*) which will cause the field
 width to be taken from the next corresponding argument (of
 type integer) in the argument list.

 Period (.): separates the field width from the next digit
 string.

 Digit string: indicates the precision. For a float the
 precision is the number of digits to be written to the
 right of the decimal point. For a string the precision is
 the maximum number of characters which will be written.
 This field may be replaced with a star (*) which will
 cause the field width to be taken from the next

19.1

 corresponding argument (assumed to be an integer) in the
 argument list

 Long (l): (letter ell) indicates that the corresponding
 argument is to be written as a long rather than an int.

 The valid conversion characters and their meanings are as
 follows:

 d The argument is assumed to be of type int and is written
 in decimal notation.

 o The argument is written in octal (without leading 0).

 x Argument is written in hexadecimal (without leading Ox).

 u The argument is assumed to be unsigned and written in
 decimal notation.

 c The argument is written as a character.

 s The argument is assumed to be a pointer to a null
 terminated string. Characters are copied from the control
 string to the output string until a null character is
 reached or until the number of characters given by the
 precision are copied. The terminating null is not copied.

 e The argument is assumed to be a float and written out in a
 decimal notation of the following form:
 [-d.dddddde[+|-]dd That is a negative sign if the number
 is negative, a single digit, followed by a decimal point,
 followed by several digits, followed by an 'e', followed
 by a sign, followed by two digits.

 f The argument is assumed to be a float and written out in a
 decimal notation of the following form: [-]ddd.dddd where
 the length of the string of digits following the decimal
 point is given by the precision.

 g Prints in either e or f format; whichever is shorter.

 If a character which is neither an option nor a conversion
 character is found while scanning a conversion specification
 the character following the percent sign (%) is simoly written
 and no conversion specification is assumed. Thus to write a
 percent sign one writes it twice(%%).

DIAGNOSTICS
 Fprintf returns ERROR if it fails.

SEE ALSO
 printf(),sprintf()

19.2

NAME
 fputs - write a string to a file

SYNOPSIS
 #include "stdio.h"
 int fputs(s,fp)
 char *S;
 FILE *fp;

DESCRIPTION
 Fputs copies the string pointed to by the first argument to the
 file indicated by the second argument. The second argument
 of type pointer to FILE and should have been returned by a call
 to fopen unless it is STDOUT or STDERR.

DIAGNOSTICS
 Returns ERROR if an error occurred while attempting to write
 the string.

SEE also
 puts()

NOTES

20.1

NAME
 free - free memory

SYNOPSIS
 char *free(block)
 char *block;

DESCRIPTION
 Free will attempt to free a block of memory indicated by its
 argument. The only valid argument for free is a pointer
 previously returned by an alloc call. This routine should only
 be used to free a block that has been allocated via alloc. The
 result of freeing the same block of memory more than once or
 attempting to use, as an argument, a pointer which was not
 returned by an alloc call is undefined (bad things happen).

DIAGNOSTICS

SEE ALSO
 alloc(), sbrk()

NOTES

21.1

NAME
 fscanf - formatted input conversion

SYNOPSIS
 #include "stdio.h"
 int fscanf(file,control [,pointer1]...)
 FILE *file;
 char *control;

DESCRIPTION
 Fscanf is nearly identical to scanf except that the input file
 specification is explicitly stated; the input is taken from the
 file pointed to by the first argument. The parameters to fscanf
 consist of a pointer to file, followed by a pointer to a null
 terminated string (the control string), followed by zero or
 more arguments of type pointer. Fscanf reads groups of
 characters from the input file pointed to by the first
 argument, interprets them according to the control string, and
 writes the results into the arguments pointed to by their
 corresponding argument pointers. The control string may contain
 blanks, tabs, and newlines which match optional white space in
 the input; it may contain ordinary characters which must match
 the input string exactly character per character; and it may
 contain conversion specifications used to control the
 interpretation of the input stream. Each conversion
 specification provides information used to translate a segment
 of the input stream into a value which may then be placed into
 an argument pointed to by its corresponding pointer in the
 argument list.

 Conversion specifications begin with a percent character
 perhaps followed by some options, and terminated by a
 conversion character. All the options are, of course, optional
 but those that are included must appear in the specified order.
 The legal options (in the order they must appear) are:

 Star (*): indicates that this conversion specification has no
 corresponding pointer in the argument list. This
 effectively skips a value in the input stream.

 Digit string: indicates the maximum field width; the maximum
 number of characters which this conversion specification
 will cause to be read from the input stream.

 Long (l): (letter ell) indicates that the corresponding pointer
 is pointing to a long rather than an int. This has no
 effect when preceding an e or f.

 The valid conversion characters and their meanings are as
 follows:

 d A decimal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type *int.

22.1

 o An octal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type *int.

 x A hexadecimal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type lint.

 h A decimal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type short.

 u An unsigned decimal integer is expected in the input
 string. Its corresponding pointer is assumed to be of type
 *unsigned.

 c The very next character is read from the input string
 (even if it's a blank). Its corresponding pointer is
 assumed to be of type char.

 s A string is expected in the input string. Its
 corresponding pointer is assumed to be of type *char. It
 should point to a space large enough to hold the input
 string plus an added null. Characters are read, starting
 with the next nonblank character, until the number of
 characters given in the precision is reached or until a
 blank, tab, or newline is reached.

 e (same as f)

 f A floating point number is expected in the input string.
 Its corresponding pointer is assumed to be of type *float.

DIAGNOSTICS
 The return value of this function is the number of parameters
 that were matched (read in from the input line) or EOF (-1).

SEE ALSO
 scanf(), sscanf()

NOTES
 Exactly one line of input is consumed for each call to fscanf.
 Thus fscanf will not fetch a new line even though there are
 still conversion specifications left to process nor will it
 save any input left from the preceding line for the next call
 to fscanf.

 A hexadecimal number may not be preceded by a 0x.

 Any character within a conversion specifier which is not a
 legal conversion specifier option or conversion character will
 be ignored along with the preceding percent sign and any
 characters inbetween. Thus there is no way to match a '%' on
 the input line.

22.2

NAME
 getc - get the next character from a file

SYNOPSIS
 #include "stdio.h"
 int getc(fp)
 FILE fp;

DESCRIPTION
 Getc returns the next character from the file indicated by its
 argument. Its argument is of type pointer to FILE and should
 have been previously returned from an fopen call unless it is
 STDIN.

DIAGNOSTICS
 Getc returns ECF (-1) upon reading end of file or on error.

SEE ALSO
 getchar()

NOTES
 Notice the return value of getc is an integer not a character.
 This is so that getc can return ECF (-1) on end of file.

23.1

NAME
 getchar - get a character from the standard input

SYNOPSIS
 int getchar()

DESCRIPTION
 Getchar is identical to getc(stdin). It returns the next
 character from the standard input.

DIAGNOSTICS
 Getchar returns ECF (-1) upon reading end of file or on error.

SEE ALSO
 getc()

NOTES
 Notice the return value of getchar is an integer not a
 character. This is so that getchar can return an ECF (-1) on
 end of file.

24.1

NAME
 _getchr - Call FLEX GETCHR entry point.

SYNOPSIS
 #include "stdio.h"
 int _getchr()

DESCRIPTION
 This function returns the value obtained by a call to the FLEX
 entry point GETCHR (get console character).

DIAGNOSTICS

SEE ALSO

NOTES
 This routine is used internally by some of the file routines
 and is not guaranteed to be supported in the future.

25.1

NAME
 gets - read input into string

SYNOPSIS
 int gets(s)
 char *S;

DESCRIPTION
 Gets will read a line from the standard input (STDIN) into
 the area pointed to by its argument. Gets returns a pointer
 to the start of the line read, or NULL if for some reason no
 line could be read. The function reads until an end of line
 is encountered. The trailing newline is NOT included in the
 line read (compare this with fgets(s,n,stdin)).

DIAGNOSTICS
 Gets will return NULL on end of file and error.,

SEE ALSO
 Fclose(), fflush(), fgets(), fopen(), fprintf(), fputs(),
 fscanf(), getc().

NOTES
 Gets will not include any trailing newline character in the
 string whereas fgets will.

26.1

NAME
 index - find first occurrence of character

SYNOPSIS
 int index(s,c)
 char *s;
 char c;

DESCRIPTION
 Index searches the string whose pointer is passed as its first
 argument and returns a pointer to the first occurrence of the
 character specified by the second argument. A zero is returned
 if the character does not appear in the string.

DIAGNOSTICS

SEE ALSO
 rindex()

NOTES

27.1

NAME
 isalpha - test for alpha character

SYNOPSIS
 int isalpha(ch)
 char ch;

DESCRIPTION
 Returns true (non zero) if its argument is an alpha character
 (a through z or A through Z); otherwise returns false (zero).

DIAGNOSTICS

SEE ALSO
 isdigit(), islower(), isspace(), isupper()

NOTES

28.1

NAME
 isdigit - test for digit

SYNOPSIS
 int isdigit(ch)
 char ch;

DESCRIPTION
 Returns true (non zero) if its argument is a digit (0 through
 9); otherwise returns false (zero).

DIAGNOSTICS

SEE ALSO
 isalpha(), islower(), isspace(), isupper()

NOTES

29.1

NAME
 islower - test for lower case

SYNOPSIS
 int islower(ch)
 char ch;

DESCRIPTION
 Returns true (non zero) if its argument is a lower case alpha
 character (a through z); otherwise returns false (zero).

DIAGNOSTICS

SEE ALSO
 isalpha(), isdigit(), isspace(), isupper()

NOTES

30.1

NAME
 isspace - test for white space

SYNOPSIS
 int isspace(ch)
 char ch;

DESCRIPTION
 Returns true (non zero) if its argument is a space, tab, or
 newline character; otherwise returns false (zero).

DIAGNOSTICS

SEE ALSO
 isalpha(), isdigit(), islower(), isupper()

NOTES

31.1

NAME
 isupper - test for upper case

SYNOPSIS
 int isupper(ch)
 char ch;

DESCRIPTION
 Returns true (non zero) if its argument is an upper case alpha
 character (A through Z); otherwise returns false (zero).

DIAGNOSTICS

SEE ALSO
 isalpha(), isdigit(), islower(), isspace()

NOTES

32.1

NAME
 itoa - convert integer to ascii string

SYNOPSIS
 int itoa(n,s)
 int n;
 char *S;

DESCRIPTION
 Itoa converts its first argument into a null terminated ascii
 string which is stored at the location pointed to by its second
 argument. If the integer is negative the string will be
 preceded by a minus sign. The second argument should point to
 an area large enough to contain the resultant string which may
 contain a sign, up to 5 digits, and a NULL termination
 character.

DIAGNOSTICS

SEE ALSO
 fcvt(), ecvt()

NOTES

33.1

NAME
 longjmp - non-local goto

SYNOPSIS
 #include "stdio.h"
 int longjmp(envp,n)
 struct jmp_buf *envp;
 int n;

DESCRIPTION
 Longjmp works in conjunction with setjmp to provide the ability
 to jump outside of a function. Compare this to a normal goto
 for which the destination must be in the same function as the
 goto statement. Setjmp is used to mark a location as a
 destination (that is save a copy of the current environment)
 for later use by the longjmp routine. The argument to setjmp is
 a pointer to structure which will hold the current environment.
 A pointer to this structure is used as an argument to longjmp.
 Longjmp simply restores the environment which was saved by the
 setjmp call. The effect is that execution continues at the
 location where the environment was saved (inside the setjmp
 call). The appearance is that of a return from setjmp.

 To mark a location one makes a call to setjmp. This will
 initialize the contents of the structure whose pointer was
 passed as an argument. From this call, setjmp will return the
 value 0. Later, when control is returned here from a longjmp,
 the return value will be decided by the second argument of the
 longjmp call.

 Now a jump can be made to this location by making a call to
 longjmp, using a pointer to the same structure that was
 initialized by setjmp as the first argument and an integer as
 the second argument. The second argument, will be used as the
 return value when control is transferred to the setjmp
 environment

 The destination of a longjump must be in a function which has
 not itself returned inbetween the call to setjmp and the call
 to longjmp. That is, the destination of a longjmp must be
 within a currently active function.

DIAGNOSTICS

SEE ALSO

NOTES

34.1

NAME
 malloc allocate memory

SYNOPSIS
 char *malloc(size)
 int size;

DESCRIPTION
 malloc will attempt to allocate a block of memory whose size is
 given by the argument. If it is successful it returns a pointer
 to that memory, otherwise it returns NULL.

DIAGNOSTICS
 Returns NULL if the memory could not be allocated.

SEE ALSO
 free(), sbrk()

NOTES

35.1

NAME
 max - return the maximum of two values

SYNOPSIS
 int max(a,b)
 int a,b;

DESCRIPTION
 Max returns the greater of its two arguments.

DIAGNOSTICS

SEE ALSO
 min()

NOTES

36.1

NAME
 min - return the minimum of two values

SYNOPSIS
 int min(a,b)
 int a,b;

DESCRIPTION
 Min returns the lesser of its two arguments.

DIAGNOSTICS

SEE ALSO
 max()

NOTES

37.1

NAME
 modf - return fractional part of float

SYNOPSIS
 float modf(fp,fint)
 float fp;
 float *fint;

DESCRIPTION
 Modf takes a floating point number as its first argument and
 returns its fractional part. Its nonfractional part is written
 to the location pointed to by the second argument.

 This routine is used by ecvt and fcvt.

DIAGNCSTICS

SEE ALSO

NOTES

38.1

NAME
 movmem - copy a block of memory from one location to another

SYNOPSIS
 int movmem (from,to,length)
 char *from, *to;
 unsigned length;

DESCRIPTION
 Movmem copies the number of bytes given by the third argument
 from the location pointed to by first argument to the location
 pointed to by the second argument. The new copy will exactly
 reflect the original as it existed before the call even if the
 two blocks of memory overlap (in that case, of course, the
 original will be partially overwritten).

DIAGNOSTICS

SEE ALSO

NOTES

39.1

NAME
 printf - formatted output conversion

SYNOPSIS
 int printf(control [,arg]...)
 char *control;

DESCRIPTION
 Printf is nearly identical to fprintf excect that there is no
 output file specification explicitly stated; the result is
 written to stdout. The parameters to printf consist of a
 pointer to a null terminated string followed by zero or more
 arguments. Printf formats and writes the arguments following
 the control string using the control string to direct
 formatting and conversion. The control string may contain
 normal characters (which are simply copied to the output file)
 and conversion specifications which control the writing of the
 arguments. Each conversion specification provides information
 used to format its corresponding argument following the control
 string. Conversion specifications begin with a percent
 character (%), perhaps followed by some options and terminated
 by a conversion character. All the options are, of course,
 optional but those that are included must appear in the
 specified order. The legal options (in the order they must
 appear) are as follows:

 Dash (-): indicates that if the number to be written is shorter
 than the specified field length, it should be left
 justified. if this option is omitted the number will be
 right justified.

 Zero (0): indicates that if the number to be written is shorter
 than the specified field length, it should be padded with
 zeros to fill the field length. If this option is omitted
 the field will be padded with blanks.

 Digit string: indicates the minimum field width. The argument
 will be written in a field at least this wide. This field
 may be replaced with a star (*) which will cause the field
 width to be taken from the next corresponding argument
 (assumed to be an integer) in the argument list.

 Period (.): separates the field width from the next digit
 string.

 Digit string: indicates the precision. For a float the
 precision is the number of digits to be written to the
 right of the decimal point. For a string the precision is
 the maximum number of characters which will be written.
 This field may be replaced with a star (*) which will
 cause the field width to be taken from the next
 corresponding argument (assumed to be an integer) in the
 argument list.

40.1

 Long (l): (letter ell) indicates that the corresponding
 argument is to be written as a long rather than an int.

 The valid conversion characters and their meanings are as
 follows:

 d The argument is assumed to be of type int and is written
 in decimal notation.

 o The argument is written in octal (without leading 0).

 x Argument is written in hexadecimal (without leading Ox).

 u The argument is assumed to be unsigned and written in
 decimal notation.

 c The argument is written as a character.

 s The argument is assumed to be a pointer to a null
 terminated string. Characters are copied from the control
 string to the output string until a null character is
 reached or until the number of characters given by the
 precision are copied. The terminating null is not copied.

 e The argument is assumed to be a float and written out in a
 decimal notation of the following form:
 [-]d.dddddde[+|-]dd That is a negative sign if the number
 is negative, a single digit, followed by a decimal point,
 followed by several digits, followed by an 'e', followed
 by a sign, followed by two digits.

 f The argument is assumed to be a float and written out in a
 decimal notation of the following form: [-]ddd.dddd where
 the length of the string of digits following the decimal
 point is given by the precision.

 g Prints in either e or f format; whichever is shorter.

 If a character which is neither an option nor a conversion
 character is found while scanning a conversion specification
 the character following the percent sign (%) is simply written
 and no conversion specification is assumed. Thus to print out a
 percent sign one writes it twice (%%). A space is NOT a legal
 option.

DIAGNOSTICS
 Printf returns ERROR if it fails.

SEE ALSO
 fprintf(), sprintf()

NOTES

40.2

NAME
 putc - write a character to a file

SYNOPSIS
 #include "stdio.h"
 int putc(c,fp)
 char c;
 FILE *fp;

DESCRIPTION
 Putc sends the character given as its first argument to the
 file whose file pointer is given as its second argument. The
 file pointer must have been previously returned from an fopen
 call unless it is STDOUT or STDERR.

DIAGNOSTICS
 Putc returns ERROR (-1) if an error occurs during the write
 process.

SEE ALSO

NOTES

41.1

NAME
 putchar - write a character to the standard output

SYNOPSIS
 int putchar(c)
 char C;

DESCRIPTION
 Putchar sends the character given as its argument to STDOUT. A
 call of the form putchar(c) is identical to putc(c,stdout).

DIAGNOSTICS
 Putchar returns ERROR (-1) if an error occurs during the write
 process.

SEE ALSO
 putc()

NOTES

42.1

NAME
 putchr - Call FLEX PUTCHR entry point.

SYNOPSIS
 #include "Istdio.h"
 int _putchr(c)
 char c;

DESCRIPTION
 This function performs a call to the FLEX entry point PUTCHR to
 perform console output.

DIAGNOSTICS

SEE ALSO

NOTES
 This routine is used internally by some of the file routines
 and is not guaranteed to be supported in the future.

43.1

NAME
 puterr - write a char to the standard error output (STDERR)

SYNOPSIS
 int puterr(c)
 char c;

DESCRIPTION
 Puterr sends the character given as its argument to STDERR. A
 call of the form puterr(c) is identical to putc(c,stderr).

DIAGNOSTICS
 Puterr returns ERROR (-1) if an error occurs during the write
 process.

SEE ALSO

NOTES
 STDERR is always directed to the terminal.

44.1

NAME
 puts - write a string to standard output

SYNOPSIS
 int puts(s)
 char *s;

DESCRIPTION
 Puts copies the string pointed to by the argument to the
 standard output. The effect is the same as fputs(s,stdout).

DIAGNOSTICS
 Returns ERROR if an error occurred while attempting to write
 the string.

SEE ALSO
 fputs()

NOTES
 Does NOT append a newline (contrary to some implementations).

45.1

NAME
 reverse - reverse a string in place

SYNOPSIS
 int reverse(s)
 char *s;

DESCRIPTION
 Reverses the order of the elements of a string pointed to by
 the argument. If the string the argument pointed to was
 "abcdef" before the call, it would be "fedcba" after the call.

DIAGNOSTICS

SEE ALSO

NOTES

46.1

NAME
 rewind - reset specified file to beginning

SYNOPSIS
 #include "stdio.h"
 int rewind(fp)
 FILE *fp;

DESCRIPTION
 Rewind resets the file back to the beginning.

DIAGNOSTICS
 Returns ERROR for improper file specification.

SEE ALSO

NOTES

47.1

NAME
 rindex - find last occurrence of character

SYNOPSIS
 int rindex(s,c)
 char *S;
 char c;

DESCRIPTION
 Rindex searches the string whose pointer is passed as its first
 argument and returns a pointer to the last occurrence of the
 character specified by the second argument. A zero is returned
 if the character does not appear in the string.

DIAGNOSTICS

SEE ALSO
 index()

NOTES

48.1

NAME
 sbrk - allocate memory

SYNOPSIS
 char *sbrk(size)
 int size;

DESCRIPTION
 Sbrk will attempt to allocate a block of memory whose size is
 given by the argument. If it is successful it returns a pointer
 to that memory; otherwise it returns ERROR.

 Sbrk is similar to alloc except that there is no way to return
 the memory to the system.

DIAGNOSTICS
 Returns ERROR (-1) if the memory could not be allocated.

SEE ALSO
 alloc(), brk(), free()

NOTES

49.1

NAME
 scanf - formatted input conversion

SYNOPSIS
 int scanf(control [,pointer1] ...)
 char *control;

DESCRIPTION
 Scanf is nearly identical to fscanf except that there is no
 input file specification explicitly stated; the input is taken
 from stdin. The parameters to scanf consist of a pointer to a
 null terminated string (the control string) followed by zero or
 more arguments of type pointer. Scanf reads groups of
 characters from the standard input, interprets them according
 to the control string and writes the results into the arguments
 pointed to by their corresponding argument pointers. The
 control string may contain blanks, tabs, and newlines which
 match optional white space in the input; it may contain
 ordinary characters which must match the input string exactly
 character per character; and it may contain conversion
 specifications used to control the interpretation of the input
 stream. Each conversion specification provides information used
 to translate a segment of the input stream into a value which
 may then be placed into an argument pointed to by its
 corresponding pointer in the argument list. Conversion
 specifications begin with a percent character (%), perhaps
 followed by some options, and terminated by a conversion
 character. All the options are, of course, optional but those
 that are included must appear in the specified order.

 The legal options (in the order they must appear) are as
 follows:

 Star (*): indicates that this conversion specification has no
 corresponding pointer in the argument list. This
 effectively skips a value in the input stream.

 Digit string: indicates the maximum field width; the maximum
 number of characters which this conversion specification
 will cause to be read off the input stream.

 Long (letter ell) indicates that the corresponding pointer
 is pointing to a long rather than an int. This has no
 effect when preceding an e or f.

 The valid conversion characters and their meanings are as
 follows:

 d A decimal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type *int.

 o An octal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type *int.

50.1

 x A hexadecimal integer is expected in the inout string. Its
 corresponding pointer is assumed to be of type lint.

 h A decimal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type short.

 u An unsigned integer is expected in the input string. Its
 corresponding pointer is assumed to be of type *unsigned.

 c The very next character is read from the input string
 (even if it's a blank). Its corresponding pointer is
 assumed to be of type *char.

 s A string is expected in the input string. Its
 corresponding pointer is assumed to be of type *char. It
 should point to a space large enough to hold the input
 string plus an added null. Characters are read, starting
 with the next nonblank character, until the number of
 characters given in the precision is reached or until a
 blank, tab, or newline is reached.

 e (same as f)

 f A floating point number is expected in the input string
 Its corresponding pointer is assumed to be of type *float.

 The return value of this function is the number of parameters
 that were matched (read in off the input line) or ECF.

DIAGNOSTICS

SEE ALSO
 fscanf(), sscanf()

NOTES
 Exactly one line of input is consumed for each call to scanf.
 Thus scanf will not fetch a new line even though there are
 still conversion specifications left to process nor will it
 save any input left from the preceding line for the next call
 to scanf. If, for example, one makes a call to scanf with a
 control string which indicates 3 arguments are expected while
 only 2 appear on the input line scanf will NOT continue to read
 lines. Fscanf will simply return with a value of 2. Likewise if
 the input line had contained 4 arguments only 3 would have been
 read while the fourth would be discarded.

 A hexadecimal number may not be preceded by a Ox.

 Any character within a conversion specifier which is not a
 legal conversion specifier option or conversion character will
 be ignored along with the preceding percent sign and any
 characters in between. Thus there is no way to match a '%' on
 the input line.

50.2

NAME
 _setext - Call FLEX SETEXT entry point

SYNOPSIS
 #include "stdio.h"
 int _setext(fp,ext)
 FILE fp;
 char ext;

DESCRIPTION
 The _setext function performs a call to the FLEX routine SETEXT
 to set a default file name extension into the given file
 control block.

DIAGNOSTICS

SEE ALSO

NOTES
 This routine is used internally by some of the file routines
 and is not guaranteed to be supported in the future.

51.1

NAME
 setjmp - non-local goto

SYNOPSIS
 #include
 int setjmp (envp)
 jmp_buf *envp;

DESCRIPTION
 Setjmp works in conjunction with longjmp to provide the ability
 to jump outside of a function. Compare this to a normal goto
 for which the destination must be in the same function as the
 goto statement. Setjmp is used to mark a location as a
 destination (that is save a copy of the current environment)
 for later use by the longjmp routine. The argument to setjmp is
 a pointer to structure which will hold the current environment.
 A pointer to this structure is used as one of the arguments to
 longjmp. Longjmp simply restores the environment which was
 saved by the setjmp call. The effect is that execution
 continues at the location where the environment was saved
 (inside the setjmp call). The appearance is that of a return
 from setjmp.

 To mark a location one makes a call to setjmp. This will
 initialize the contents of the structure whose pointer was
 passed as an argument. From this call setjmp will return the
 value 0. Later, when control is returned here from a longjmp,
 the return value will be decided by the second argument of the
 longjmp call. (see longjmp)

 Now a jump can be made to this location by making a call to
 longjmp using a pointer to the same structure that was
 initialized by setjmp as the first argument and an integer as
 the second argument. The second argument will be used as the
 return value when control is transferred to the setjmp
 environment.

 The destination of a longjmp must be in a function which has
 not itself returned inbetween the call to setjmp and the call

 to longjmp.

DIAGNOSTICS

SEE ALSO
 longjmp()

NOTES

52.1

NAME
 sprintf - formatted output conversion

SYNOPSIS
 int sprintf(string,control [,arg1]...)
 char *string, *control;

DESCRIPTION
 Sprintf is nearly identical to printf except that rather than
 writing to the standard output (stdout), the result is placed
 in a null terminated string pointed to by the first argument
 (which is assumed to be of type pointer to character). The
 parameters to sprintf consist of a pointer to char, followed by
 a pointer to a null terminated string, followed by zero or more
 arguments. Sprintf formats the arguments following the control
 string, using the control string to direct formatting and
 conversion. It places the result in the string pointed to by
 the first argument which must be long enough to accept it. The
 control string may contain normal characters (which are simply
 copied to the output string) and conversion specifications
 which control the cooying of the arguments. Each conversion
 specification provides information used to format its
 corresponding argument following the control string. Conversion
 specifications begin with a percent character, (%), perhaps
 followed by some options, and terminated by a conversion
 character. All the options are, of course, optional but those
 that are included must appear in the specified order. The legal
 options (in the order they must appear) are as follows:

 Dash (-): indicates that, if the number to be copied is shorter
 than the specified field length, it should be left
 justified. if this option is omitted the number will be
 right justified.

 Zero (0): indicates that, if the number to be copied is shorter
 than the specified field length, it should be padded with
 zeros to fill th field length. If this option is omitted
 the field will be padded with blanks.

 Digit string: indicates the minimum field width. The argument
 will be copied into a field at least this wide. This field
 may be replaced with a star (*) which will cause the field
 width to be taken from the next corresponding argument
 (assumed an integer) in the argument list.

 Period (.): separates the field width from the next digit
 string.

 Digit string: indicates the precision. For a float the
 precision is the number of digits to be written to the
 right of the decimal point. For a string the precision is
 the maximum number of characters which will be written.
 This field may be replaced with a star (*) which will
 cause the field width to be taken from the next

53.1

 corresponding argument (assumed to be an integer) in the
 argument list

 Long (l): (letter ell) indicates that its corresponding
 argument is to be written as a long rather than an int.

 The valid conversion characters and their meanings are as
 follows:

 d The argument is assumed to be of type int and is written
 in decimal notation.

 o The argument is written in octal (without leading 0).

 x Argument is written in hexadecimal (without leading Ox).

 u The argument is assumed to be unsigned and written in
 decimal notation.

 c The argument is written as a character.

 s The argument is assumed to be a pointer to a null
 terminated string. Characters are copied from the control
 string to the output string until a null character is
 reached or until the number of characters given by the
 precision are copied. The terminating null is not copied.

 e The argument is assumed to be a float and written out in a
 decimal notation of the following form:
 [-]d.ddddddde[+|-]dd That is a negative sign if the number
 is negative, a single digit, followed by a decimal point,
 followed by several digits, followed by an 'e', followed
 by a sign, followed by two digits.

 f The argument is assumed to be a float and written out in a
 decimal notation of the following form: [-]ddd.dddd where
 the length of the string of digits following the decimal
 point is given by the precision.

 g Prints in either e or f format; whichever is shorter.

 if a character which is neither an option nor a conversion
 character is found while scanning a conversion specification
 the character following the percent sign (%) is simply written
 and no conversion specification is assumed. Thus to write a
 percent sign one writes it twice (%%)

DIAGNOSTICS

SEE ALSO
 printf(), fprintf()

NOTES

53.2

NAME
 sscanf - formatted string conversion

SYNOPSIS
 int sscanf(string,control [,pointer1] ...)
 char *string, *control;

DESCRIPTION
 Sscanf is nearly identical to fscanf except that its input is
 taken from the string pointed to by the first argument rather
 than a file. The parameters to sscanf consist of a pointer to
 char, followed by a pointer to a null terminated string (the
 control string), followed by zero or more arguments of type
 pointer. Sscanf reads groups of characters from the input
 string pointed to by the first argument, interprets them
 according to the control string, and writes the results into
 the arguments pointed to by their corresponding argument
 pointers. The control string may contain blanks, tabs, and
 newlines which match optional white space in the input string;
 it may contain ordinary characters which must match the input
 string exactly character per character; and it may contain
 conversion specifications used to control the interpretation of
 the input string. Each conversion specification provides
 information used to translate a segment of the input string
 into a value which may then be placed into an argument pointed
 to by its corresponding pointer in the argument list.

 Conversion specifications begin with a percent character, (%),
 perhaps followed by some options, and terminated by a
 conversion character. All the options are, of course, optional
 but those that are included must appear in the specified order.

 The legal options (in the order they must appear) are as
 follows:

 Star (*) indicates that this conversion specification has no
 corresponding pointer in the argument list. This
 effectively skips a value in the input string.

 Digit string: indicates the maximum field width; the maximum
 number of characters which this conversion specification
 will cause to be read off the input string.

 Long (l): (letter ell) indicates that the corresponding pointer
 is pointing to a long rather than an int. This has no
 effect when preceding an e or f.

 The valid conversion characters and their meanings are as
 follows:

 d A decimal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type lint.

54.1

 o An octal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type *int.

 x A hexadecimal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type *int.

 h A decimal integer is expected in the input string. Its
 corresponding pointer is assumed to be of type *short.

 u An unsigned decimal integer is expected in the input
 string. Its corresponding pointer is assumed to be of type
 *unsigned.

 c The very next character is read from the input string
 (even if it's a blank). Its corresponding pointer is
 assumed to be of type *char.

 S A string is expected in the input string. Its
 corresponding pointer is assumed to be of type *char. It
 should point to a space large enough to hold the input
 string plus an added null. Characters are read, starting
 with the next nonblank character, until the number of
 characters given in the precision is reached or until a
 blank, tab, or newline is reached.

 e (same as f)

 f A floating point number is expected in the input string.
 Its corresponding pointer is assumed to be of type *float.

 The return value of this function is the number of parameters
 that were matched (read in off the input line) or EOF.

DIAGNOSTICS

SEE ALSO
 scanf(), fscanf()

NOTES
 A hexadecimal number may not be preceded by a Ox.

 Any character within a conversion specifier which is not a
 legal conversion specifier option or conversion character will
 be ignored along with the preceding percent sign and any
 characters inbetween. Thus there is no way to match a '%' on
 the input line (i.e. writings %% in the control string will not
 cause it to try to match a % in the input string).

54.2

NAME
 strcat - copy string

SYNOPSIS
 int strcat(sl,s2)
 char *sl,*s2;

DESCRIPTION
 Strcat appends a copy of the string pointed to by its second
 argument to the end of the string pointed to by its first
 argument. It is assumed that the first argument points to an
 area large enough to accomodate the resultant string.

DIAGNOSTICS

SEE ALSO
 strcmp(), strlen(), strsave()

NOTES

55.1

NAME
 strcmp - compare strings lexicographically

SYNOPSIS
 int strcmp(sl,s2)
 char *sl,*s2;

DESCRIPTION
 Strcmp lexicographically compares its first argument with its
 second. It returns 1 if the first is greater than the second, 0
 if the two are equal, and -1 if the first is less than the
 second.

DIAGNOSTICS

SEE ALSO
 strcpy(), strlen(), strsave()

NOTES

56.1

NAME
 strcpy - copy string

SYNOPSIS
 int strcpy(sl,s2)
 char *sl,*s2;

DESCRIPTION
 Strcpy copies the string pointed to by the second argument to
 the area pointed to by the first. It stops after a null
 character has been conied.

DIAGNOSTICS

SEE ALSO
 strcmp(), strlen(), strsaveo

NOTES

57.1

NAME
 strlen - return string length

SYNOPSIS
 int strlen(s)
 char *s;

DESCRIPTION
 Strlen returns the length of the string pointed to by the
 argument (not including the terminating null).

DIAGNOSTICS

SEE ALSO
 strcmp(), stcpy(), strsave()

NOTES

58.1

NAME
 strncat - copy string

SYNOPSIS
 int strncat(sl,s2,n)
 char *sl,*s2;
 int n;

DESCRIPTION
 Strncat appends a copy of the string pointed to by its second
 argument to the end of the string pointed to by its first
 argument. Strncat copies at most the number of characters
 specified by its third argument. It is assumed that the first
 argument points to an area large enough to accomodate the
 resultant string.

DIAGNOSTICS

SEE ALSO
 strcat(), strcmd(), strlen(), strsave()

NOTES

59.1

NAME
 strncmp - compare strings lexicographically

SYNOPSIS
 int strncmp(sl,s2,n)
 char *sl,*s2;
 int n;

DESCRIPTION
 Strncmp lexicographically compares its first argument with
 its second. It returns 1 if the first is greater than the
 second, 0 if the two are equal, and -1 if the first is less
 than the second. Strncmp compares at most the number of
 characters specified by its third argument; any others are
 not considered.

DIAGNOSTICS

SEE ALSO
 strcmp(), strcpy(), strlen(), strsave()

NOTES

60.1

NAME
 strncpy - copy string

SYNOPSIS
 int strncpy (s1,s2,n)
 char *sl,*s2;
 int n;

DESCRIPTION
 Strncpy copies the string pointed to by the second argument to
 the area pointed to by the first. It stops after it has copied
 the number of characters specified by its third argument or
 when a null character has been copied.

DIAGNOSTICS

SEE ALSO
 strcmp(), strcpy(), strlen(), strsave()

NOTES

61.1

NAME
 strsave - save string in memory

SYNOPSIS
 char *strsave(s)
 char *S;

DESCRIPTION
 Strsave attempts to allocate a space in memory large enough to
 hold the string pointed to by the argument (plus its
 terminating null). If it succeeds strsave copies the string
 pointed to by the argument into the memory and returns a
 pointer to it. If it fails to allocate sufficient memory,
 strsave returns NULL.

 The area used by "strsave" to save the string is obtained by a
 call to "alloc" and thus may be returned to the system by a
 call to "free" using the string pointer as an argument.

DIAGNOSTICS

SEE ALSO
 alloc(), free(), strcmp(), strcpy(), strlen()

NOTES

62.1

NAME
 tolower - convert to lower case

SYNOPSIS
 char tolower(ch)
 char ch;

DESCRIPTION
 Returns its argument converted to lower case

DIAGNOSTICS

SEE ALSO
 toupper()

NOTES

63.1

NAME
 toupper - convert to upper case

SYNOPSIS
 char toupper(ch)
 char ch;

DESCRIPTION
 Returns its argument converted to upper case

DIAGNOSTICS

SEE ALSO
 tolower()

NOTES

64.1

NAME
 uldiv unsigned long integer divide

SYNOPSIS
 long uldiv(opl,op2)
 long opl,op2;

DESCRIPTION
 Uldiv returns a long (unsigned) integer which represents the
 nonfractional result of dividing the first (unsigned) long
 integer argument by the second (unsigned) long integer
 argument.

DIAGNOSTICS
 Division by 0 will return (long) -1.

SEE ALSO
 ulmod(), ulmul()

NOTES
 There is actually no type "unsigned long". Uldiv operates on
 longs as if they were unsigned by ignoring the normal sign
 conventions.

65.1

NAME
 ulmod - unsigned long modulo operation

SYNOPSIS
 long ulmod (opl, op2)
 long opl,op2;

DESCRIPTION
 Ulmod returns a long (unsigned) integer which represents the
 remainder of the result produced by dividing the first
 (unsigned) long integer argument by the second (unsigned) long
 integer argument.

DIAGNOSTICS
 When the second argument is zero (division by 0) the function
 returns the first argument.

SEE ALSO
 uldiv(), ulmul()

NOTES
 There is actually no type "unsigned long". Ulmod operates on
 longs as if they were unsigned by ignoring the normal sign
 conventions.

66.1

NAME
 ulmul - unsigned long multiply

SYNOPSIS
 long ulmul (opl, op2)
 long opl,op2;

DESCRIPTION
 Ulmul returns a long (unsigned) integer which represents the
 result of multiplying the first (unsigned) long integer
 argument by the second (unsigned) long integer argument.

DIAGNOSTICS

SEE ALSO
 uldiv(), ulmod

NOTES
 There is actually no type "unsigned long". Ulmul operates on
 longs as if they were unsigned by ignoring the normal sign
 conventions.

67.1

NAME
 _unext - unextend float

SYNOPSIS
 float unext(ef)
 struct extflt
 {
 char sign;
 int exp;
 long mantissa;
 } *ef;

DESCRIPTION
 _unext returns the float which is represented by the extended
 floating point number contained in the structure pointed to by
 the argument. The first element of the structure is assumed to
 contain the sign bit of the number, the second element should
 contain the unbiased exponent, and the third the mantissa.

DIAGNOSTICS

SEE ALSO
 _extend()

NOTES

68.1

NAME
 ungetc - push character back on input stream

SYNOPSIS
 #include "stdio.h"
 int ungetc (c, fp)
 FILE *fp;
 int c;

DESCRIPTION
 Ungetc attempts to push a character back on the input stream so
 that it will be the next one retrieved. At most one character
 may be pushed back inbetween calls to getc. The first argument
 is the character to be pushed the second is a pointer to the
 file into which the character is to be pushed. The file pointer
 must have been previously returned from an fopen call unless it
 is STDIN.

DIAGNOSTICS
 Ungetc returns ERROR (-1) if it could not push the character.

SEE ALSO
 getc()

NOTES

69.1

NAME
 ungetchar - push character back on standard innut stream

SYNOPSIS
 #include "stdio.h"
 int ungetchar(c)
 char c;

DESCRIPTION
 Ungetchar attempts to push a character back on the standard
 input stream so that it will be the next one retrieved. At most
 one character may be pushed back inbetween calls to getchar.
 The argument is the character to be pushed. This call is
 equivalent to ungetc (c, STDIN)

DIAGNOSTICS
 Ungetchar returns ERROR (-1) if it could not push the
 character.

SEE ALSO

NOTES

70.1

NAME
 unlink - delete file

SYNOPSIS
 int unlink(name)
 char *name;

DESCRIPTION
 Unlink deletes the file whose name is contained in the string
 pointed to by its argument. Under some operating systems unlink
 simply decreases a link count to the file and deletes the file
 if the link count reaches zero as a result.

DIAGNOSTICS
 Unlink returns ERROR if the file could not be cveleted.

SEE ALSO

NOTES
 Under the Flex and 0S9 operating systems unlink simply has the
 effect of deleting the file. Under more Unix like operating
 systems such as UniFLEX unlink decreases the link count on the
 file. Such an operating system will delete any file whose link
 count decreases to zero. There is a companion library routine,
 link(), which increases the link count on a file for those
 operating systems which support it.

71.1

72.1

ADDENDUM TO THE INTROL-C USER MANUAL

LINKER AND LOADER REFERENCE MANUAL

-b Option
Two forms of the' "-b" option described on page L.1.6 of the
Linker And Loader Reference Manual are now available:

 -b -or- -b=<Pathnarne>

The first form above, "-b", prevents the Standard Library,
libc.R, from being searched by the Linker. The second form,
"-b=<Pathname>", defines <pathname> as being a non-standard place
in which to find the Standard Library, libc.R.

-i Option
A "-i" option has been added for the Linker. When. a -i is
specified on the link command line, this option specifier will
force loading of all modules on the command line.

-l Option

Two forms of the "-l" option described on page L.1.8. of the
Linker And Loader Reference Manual are now available:

 -l[s][x][u][=<file>] -or- -ll[s][x][u][=<file>]

The first form above, where a single leading "1" is specified,
causes a linker listing to be produced exactly as described on
page L.1.8 of the User Manual. The second form, where a double
leading "l" is used, instead causes a loader listing to be
produced. That is, an option specification beginning with "-l"
will be ignored by the linker itself and passed intact to the
loader to cause a loader listing to be generated.

-r option
A "-r" option has been added for the Linker. The -r option
specifier causes the .RL output file generated by the Linker to
be saved during an automatic link-and-load sequence. Normally
(when the -r option is not specified), when the Linker
automatically calls the Loader, the Linker passes the Loader a
"-z" option specifier which causes the Loader to delete its input
file (ie the Linker's .RL output file) when the Loader has
finished with it. Specifying the -r option on the link command
line inhibits the Linker from passing the -z specifier to the
Loader, thus causing the intermediate RL Linker output file to
be retained.

STANDARD LIBRARY REFERENCE MANUAL (UC6809 Library Only)

The Standard Library Reference Manual erroneously describes two
routines that do not exist in the supplied Standard Library:
 rand - Return random number
 srand - Set seed for random number generator
Therefore, please delete/ignore the descriptions for these two
routines.

APPENDIX A
FC6809 STANDARD LIBRARY

NON-ZERO CLASS LIBRARY ROUTINES

As discussed in the Compiler Reference manual and Linker Reference
manual, all relocatable modules (including those contained in the
Standard Library) have a special identifying attribute called a
"class" specifier, which is a number in the range 0 through 255. At
link time, the Linker uses a module's class number to differentiate
between different versions of identically named modules that may
possibly co-exist within the same library.

In the case of the FC6809 Standard Library, most of the function
modules supplied in the library have a preassigned modure class
specifier of "O" (zero). In fact, each of the various runtime
support functions is furnished and available for use as a class 0
type of module. However, the library also includes "alternate"
versions of some runtime functions. Where such alternate support
routines exist, they have been given the same filename as the
"standard" version of the routine, but have been assigned non-zero
class numbers.

In all cases, the class 0 version of a given library routine will
always provide the full runtime support features that have been
described for that routine in this reference manual. Any non-zero
classes of library routines, by comparison, provide a modified (and
typically abbreviated) level of support for the given runtime
function, usually resulting in smaller runtime overhead in the final
program.

Four non-zero class categories of library functions are included in
the FC6809 Standard Library; class 5, class 6, class 7, and class 8.

Classes 5 and 6 are associated with selection of modified versions
of the output formatting routines, such as printf, fprintf, and
sprintf; classes 7 and 8 select modified versions of the input
formatting routines, such as scanf, fscanf, and sscanf. Whereas the
class 0 versions of these respective routines provide full support
for longs, integers, and floating point numbers, the non-zero class
versions differ as follows:

 Class 5 - Output formatting routines will support only integers.

 Class 6 - Output formatting routines will support only integers
 and longs.

 Class 7 - Input formatting routines will support only integers.

 Class 8 - Input formatting routines will support only integers
 and longs.

A.1

A.2

APPENDIX D

INSTALLATION OF THE FC6809 INTROL-C COMPILER

This section describes the installation of Introl-C on the Flex
operating system.

The FC6809 Introl-C Compiler is shipped on standard 8 inch or 5 inch
floppy disk format. Verify that the disk is indeed intended for the
Flex operating system and also that the disk format is what you
expect by reading the label on the distribution diskette envelope.
Note that the disk shipped to you is not bootable and thus cannot be
used to start your Flex system.

Before it can be used, the Compiler and its associated programs must
be copied from the distribution disk to the system drive. Unless
specified otherwise, the program to be compiled is assumed to be on
the work drive.

Notice that the "stdio.h", "flex.h", and "setjmp.h" files are NOT
capitalized. When you copy these files, be sure that their names are
in lower case. On many FLEX systems file names are automatically
converted to upper case even when typed in lower case. Many systems
already have a utility to defeat this "feature" but, if not, the
distribution disk includes a utivity called "CASE" which, when run,
prevents this automatic conversion. The CASE program toggles between
'upper/lower case' and 'upper case only' each time it is run so if
it is run an even number of times the system will again convert
lower case to upper.

You may also wish to take note of the other files you find on your
distribution disk. They include source code examples of many of the
standard library routines and perhaps some useful or interesting
routines. See your FLEX System Users Manual for details on making
copies of files.

INTROL-C is a registered trademark of Introl Corp.
Flex is a trademark of Technical Systems Consultants, Inc.

0D.1

INTROL

LINKER AND LOADER
REFERENCE MANUAL

The contents of this manual have been carefully reviewed and are
believed to be entirely correct. However, Introl Corp. assumes no
responsibility for inaccuracies.

The software described in this manual is proprietary and is
furnished under a license agreement from Introl Corp. The software
and supporting documentation may be used and/or copied only in
accordance with said license agreement.

INTROL-C is a registered trademark of Introl Corp.
UNIX is a trademark of Bell Laboratories
TNIX is a trademark of Tektronix, Inc.
INIX is a trademark of Introl Corp.

Introl Corp.
647 W. Virginia St.

Milwaukee, WI 53204 USA

tel. (414) 276-2937

Copyright 1983 Introl Corp.
All Rights Reserved

Table of Contents

Linker And Loader Reference Manual

Table of Contents L.0.1

Linker L.1.1

Loader L.2.1

Library manager L.3.1

Appendices L.A.1

L.0.1

L.0.2

LINKER

The function of the Linker is to join several relocatable object
modules together to form a single relocatable object module as the
result. Normally, when the Introl Linker finishes, it will
automatically call the Loader, causing the object module produced by
the Linker to be then translated into an executable file by the
Loader. Once such executable file has been generated, the actual
object module generated by the Linker is normally automatically
deleted. Thus, although the Linker itself produces an intermediate
relocatable module, the more usual result of a linker command line
call is an executable file that is subsequently produced by the
Loader. Options are provided, however, to permit the Linker's output
module to be retained even though an executable file has been
produced; also, an option exists to inhibit the Loader call entirely
when the desired result is simply the relocatable module generated
by the Linker.

LINKER COMMAND LINE

The general form of the link command line is:

ilink <files> {<options>} {<files>} {<options>}

where <options> can be zero or more Linker and Loader option
specifiers (described later in this Section), and <files> are the
filenames of the relocatable files or libraries which are to be
input to the Linker. Unless an option to inhibit loading is
explicitly specified on the command line (the "-n" option), the
Loader will be automatically executed when the Linker finishes.

The Linker expects each of its input files to have a filename
extension; if none is explicitly defined, the filename extension is
assumed to be ".R", which is the filename extension normally
assigned to relocatable files generated by the Assembler. If the
Linker is being run independently (ie with the "-n" option
specified, which inhibits the automatic call to the Loader), the
Linker will produce a relocatable module as the end result, having
the filename extension ".RL". Such modules (ie modules which have
been linked but not loaded) are themselves relocatable modules which
can be legally reused as inputs to the Linker, if desired. If the
Loader call is not explicitly inhibited, a link command line call
will result in generation of an executable output file as the final
result (ie, the file produced by the Loader pass). In this latter
case, the intermediate relocatable module generated by the Linker
(ie the file having a ".RL" filename extension) will not be retained
unless the user specifically opts to do so (via the "-r" Linker
option). In either case, the filename assigned to the output
module(s) produced as a result of the linker call will be determined
by the "primary function name" symbol, which is discussed under
Operation, below.

L.1.1

OPERATION

When the Linker is first invoked, it begins its linking process by
attempting to resolve two references which are implicit to the
Linker. The first is called the "primary function name", the second
is the program "entry point". The user may, as an option
specification on the link command line (the "-m=<file>" option),
specify any symbol as a primary function name. If none is explicitly
defined, however, the primary function naming symbol will be assumed
to be "_main", the symbol that represents the name of the usual
starting function ("main") in a C program. The filename of the
module in which the Linker finds the primary function name will
normally be the name assigned to the Linker's relocatable output
module, but with the filename extension ".RL" being appended to the
Linker's output module.

The Linker begins its search by first searching through all of the
files specified on the link command line, searching these files in
the order they are listed, attempting to resolve the primary
function name. If it succeeds, it will include the module which
contains the definition of the primary function name, and will then
proceed to resolve any external references which that module makes.
(If the primary function name cannot be found, the Linker
automatically loads the Standard Library and attempts to resolve the
"entry point" symbol, as described below.) When all possible
external references caused by inclusion of the module containing the
primary function name have been satisfied, the Linker will then
attempt to resolve the "entry point" symbol. In doing so, the Linker
will first search through the files on the link command line, and
then search the Standard Library if necessary, looking for a module
which has an entry point symbol defined. If it finds one, it will
include the module which contains the entry point and attempt to
resolve any resultant external references that module makes.

An unmodified Standard Library will always contain a module for
which an entry point is defined. This is the module usually used to
set up the environment required before the first C function (usually
"main") can be executed. The Compiler itself does not normally
define an entry point when it produces a module. An assembly
language programmer, however, may specify the entry point of an
assembly language module by placing the name of the entry point
following the END assembler directive. If there is more than one
module with an entry point defined, the Linker will assume the entry
point is that of the first such module it finds after beginning its
search. It begins its search with the files on the link command
line, scanning left to right, and then searches the Standard
Library, top to bottom. Therefore, if a module on the link command
line defines an entry point, that module will be the first module
found by the Linker and, therefore, will be the one selected for
inclusion (ie rather than the module contained in the Standard
Library). If no module on the link command line contains an entry
point, the Linker will assume the entry point symbol is "cstart",
which happens to be the usual name for the Standard Library routine
which sets up the environment for a C program.

L.1.2

The Linker terminates when it has no more external references to
resolve or, alternatively, when it runs out of files to search in
attempting to satisfy any unresolved references that might still
exist. The Linker's output will be a relocatable module that has the
same name as the name of the module which contains the primary
function name, but with a ".RL" filename extension appended. When
the Linker has determined it has resolved all the external
references it possibly can, it will automatically call the Loader.
If all external references have been successfully resolved by the
Linker, the Loader will load the Linker's output into an executable
output file. If unresolved references still exist, however, the
Loader will complain and loading of the module will be unsuccessful.

As indicated above, it is perfectly legal to use the Linker to link
several modules together which, of themselves, do not satisfy all
the external references they make. This feature is very useful when
it is desired to link two or more relocatable files together to
produce a single resultant "partially linked" module (which may
contain some unresolved references). Such partially linked modules
may themselves then be reused as inputs in subsequent linking
operations, and linked with other relocatable modules as necessary.
In such-cases, when it is the user's intention to do partial linking
of this type, a user option ("-n") to prevent automatic execution of
the Loader must be specified on the link command line.

In many cases, such as for a compiled C program contained in a
single module, calling the Linker may be as simple as specifing the
name of a single relocatable file produced by the Compiler. For
example, if the file to be linked and loaded had the name "test.R"
(which is the file that would be produced by the Compiler if the
user had compiled a program called "test.c"), the user could call
the Linker by entering the following:

ilink test

For this example, the Linker would proceed to first link the file
'test.R" with applicable referenced functions from the Standard
Library ("libc.R"), producing the linked module "test.RL" as an
intermediate result. It would then automatically call the Loader,
which would load "test.RL" into either an executable file or a file
of load records, as appropriate to the type of Introl Loader being
used. Since the "-r" option was not specified on the linker command
line for this particular example, the Loader would also
automatically delete the "test.RL" file when it had finished using
it. Note that it is unnecessary to specify the Standard Library,
"libc.R", on the command line; the Standard Library is always
implicit to the Linker when it is called.

LINKER CLASS LIST

Each relocatable module produced by the Assembler, as well as each
module contained in the Standard Library, has an attribute called

L.1.3

its "class", which is a user-assignable number from "0" (zero) to
"255". During the linking process, the Linker always uses the
module's class number in combination with the module's filename for
module identification purposes. The class number is, in effect, an
"extra identifier" that provides a mechanism for distinguishing
between several identically named modules that may be contained in a
library.

The default "class" for modules produced bv the Assembler is "0";
however, any other legal class number (ie "1" through "255") may be
selectively assigned to any of these modules by the user. Similarly,
most of the library routines contained in the Standard Library,
libc.R, have a preassigned class number of "C", although several
non-zero class modules are also supplied. For example, libc.R
contains 3 different classes of the ofmt routines used by the
"printf", "fprintf", and "sprintf" Standard Library functions
(classes 0, 5, and 6) and 3 different classes of the imft routines
used by the "scanf", "fscanf", and "sscanf" Standard Library
functions (classes 0, 7, and 8). The class 0 ofmt routine supports
longs, ints, and floats; the class 5 ofmt routine supports longs
only; and the class 6 ofmt routine supports longs and ints.
Similarly, the class 0 ifnt routine supports longs, ints, and
floats; the class 7 ifmt routine supports only longs; and the class
8 ifmt routine supports longs and ints.

Because of a relocatable module's class attribute, one of the link
time options available to the user is the specification of a "linker
class list" on the link command line. Use of a class list
specification is only necessary when the user wants modules other
than class "O" modules to be considered for inclusion by the Linker.

The linker class list specification defines two things to the
Linker: (1) it defines the specific non-zero classes of modules that
should be potentially considered for that particular link process,
and (2) it simultaneously establishes a priority ranking of these
classes of modules, which enables the Linker to choose the "correct"
module from among possibly several that may have been given
identical filenames in a library.

A linker class list is specified on the link command line as one or
more <option> entries of the form:

t=<class list>

where <class list> is a series of one or more numerical values from
"1" through "255" (see -t option below). The numerical values
contained in <class list> represent those specific non-zero module
classes, listed in the order in which they are to be "preferred" for
possible use, which are to be considered potentially valid for
inclusion for that particular link process. Modules of class "O" are
ALWAYS implicit in any class list specification and therefore are
not included in a linker class list on the command line. The Linker
automatically assigns lowest "preference" to class "O" modules and
will only use a class 0 module if it cannot find some other

L.1.4

identically named module having one of the non-zero classes defined
in the linker class list.

As mentioned earlier, a class list specification on the linker
command link is only necessary if modules having a class other than
"0" are to be considered for use by the Linker. When a class list is
specified, however, it is important to note that the order in which
any class numbers appear on the command line is just as significant
to the Linker as the actual class numbers themselves. This is
because the Linker (which scans the entire command line from left to
right to determine all of the acceptable classes) assumes that the
class numbers are listed by the user in ordered sequence on the
command line, with the "most preferred"'class being the class it
first encounters on the command line, the "next most preferred"
class being the second class it encounters, and so on. The Linker
will always select the "most preferred" class of any given named
module that it can find.

An ordered class list of this type is necessary for the user to
unambiguously define, and the Linker to properly select, the
intended module in many instances. For example, suppose the user had
compiled and assembled a program module, "file1", (with a class of
"0") that referenced two library routines contained in the Standard
Library, one called "abc" and the second called "xyz". Further
assume that two different versions of the abc module existed, one
with class 0 and the other with class 1; and three versions of xyz
existed, one with class 0, one with class 1, and one with class 2.
If the user wanted to link file1 with the class 1 module of abc and
the class 2 module of xyz, he could enter a link command line such
as:

ilink file1 t=2,1

In this case the Linker would ascertain that, given the choice, it
should give highest preference to using class 2 modules, next
highest preference to class 1 modules, and lowest preference to
class 0 modules. During the linking process the Linker would first
look for a class 2 filel module and, failing that, then look for a
class 1 file1 module and, failing that, then look for a class 0 file
1 module, which it would find and therefore include. The Linker
would then begin searching the Standard Library to resolve the
references filel makes to abc and xyz. it would begin its search for
abc by first looking for an abc class 2 module and, failing that,
then begin looking for an abc class 1 module which it would find and
link in with filel to resolve the reference made to abc. Similarly,
it would begin its search for xyz by first looking for an xyz class
2 module which it will find and link in to file1 to resolve the
reference made to xyz. Aithough an abc class 0 module and xyz class
1 and xyz class 0 modules also existed in the library, these would
have been ignored by the Linker inasmuch as it had been able to find
"more preferred" versions of abc and xyz.

By comparison, if the user had used a link command line such as

L.1.5

ilink t=1,2 file1

the Linker would instead have given highest preference to class 1
modules and next highest preference to class 2 modules, with class 0
modules again having lowest priority (as is ALWAYS the case for
class 0 modules). In this case the Linker would first look for a
class 1 file1 module, then a class 2 file1 module, and then a class
0 file1 module which it would find and include. The Linker would
then look for, find, and link in the ("most preferred") class 1 abc
module; then look for, find, and link in the ("most preferred")
class 1 xyz module. The class 2 xyz module would ONLY have been
considered for inclusion in this instance if the Linker were unable
to find the "more preferred" class 1 module, which of course it does
find in the example situation given.

Notice that the class list may contain multiple class specifiers and
that class zero is ALWAYS implicit in any class list specification.

LINK COMMAND LINE OPTIONS

Linker options, as well as Loader options, may be specified on the
link command line. Loader options, if specified, will be passed on
to the Loader when it is automatically called by the Linker. The
"linker-specific" options listed below are those options which apply
specifically to the Linker, per se. The Loader options that may also
be specified on the link command line are discussed in the Loader
Appendices to this manual.

Linker-Specific options include:

-b
 This option prevents the Standard Library, "libc.R", from being
 searched by the Linker. Usually this option is specified in
 combination with the "-f" Linker option, discussed below, when
 programs are being

-c=<file>
 The option specifies that <file> is a command file where the
 Linker will find additional information. The command file is a
 text file which may contain extra options and additional file
 names to be referenced following those listed on the command
 line. Each option or file name must appear on a separate line
 in the command file.

-d[<c>]
 This option is used for specifying, at link time, which of
 several (optionally available) Introl Loaders is to be called
 by the Linker when linking is completed. Specifically, use of
 this option will cause the Linker to call the Loader whose
 Introl filename is "<c>ld", where the <c> represents the first
 character of the desired Loader's "name". For example, the

L.1.6

 option specification "-dh" would instruct the Linker to call
 the Loader named "hld" when it finishes (assuming of course
 that the "hld" Introl Loader is actually available for use). If
 the -d[<c>] option is not specified, or if there is no
 character specified via the <c> entry, the Loader selected for
 use will default to the "standard" Loader supplied with the
 Compiler. (In general, the "standard" Loader is one which
 produces code that is executable on the Compiler's host
 operating system.) The several different types of Loaders that
 are optionally available for use, and the "<c>ld" names
 associated with each, are described in the Loader Appendix of
 this manual.

 NOTE: When an "optional" target- system- dependent-type of
 Loader is being specified for use, the compatible "standard
 library" supplied with that optional Loader must also be
 specified for use during the linking process. In such cases the
 "-b" Linker option can be used to inhibit the Linker's use of
 the "standard" libc.R library, and the "-f" option used to
 instruct the Linker to instead find and use the "optional"
 standard library which is compatible with the target operating
 system.

-e=<symbol>
 This option sets the entry point. If the <symbol> being
 specifed as the entry point refers to a C symbol that has been
 generated by the Compiler, the <symbol> name must include a
 leading underscore character (ie the Compiler automatically
 pre-pends a leading underscore to all symbols it generates). If
 this option is not used, the Linker will search through all the
 modules in the order they are listed on the command line, and
 then search the Standard Library if necessary, in an attempt to
 find one which has an entry point defined. The entry point will
 be that of the first such file the Linker finds. If no input
 module specifies an entry point, the Linker will usually find
 one called "cstart" in a module of the same name in the
 Standard Library. For assembly language programs, an entry
 point is placed in a module by placing the desired entry point
 symbol on the "end" directive in an assembly language file (see
 Assembler section of the Compiler Reference Manual).

-f<string> or -f=<string>
 This option, which has two forms, is used to specify that
 additional libraries will be found in the standard library
 place which are to be searched by the Linker (ie libraries that
 are to be searched in addition to the Standard Library,
 libc. R) .The "-f<string>" form of the option specifies that an
 additional library to be searched is named "lib<string>.R",
 where <string> represents any series of characters. The
 "-f=<string>" form specifies that an additional library to be
 searched is named "<string>.R", where <string> can represent
 any string of characters. This option must normally be used
 (together with the "-b" option mentioned above) when an
 "optional" Loader is being called; this is necessary so that

L.1.7

 the Linker uses a "standard library" which is compatible with
 that particular Loader.

-l[s][x][u][=<file>]
 This option causes a linker listing to be produced. The
 optional file name indicates that the listing is to be placed
 in the indicated file rather than being listed on the console.
 The "s", "x" and "u" characters are all optional and affect
 the listing's contents, as follows: If the "s" character is
 specified the listing will include all symbols. If the "X"
 character is specified the listing will include a cross
 reference symbol listing. If the "u" character is specified the
 listing will include a list of the modules taken from each
 the files specified on the command line. Any combination of
 these three characters may be specified.

-m=<symbol>
 This option defines the primary function naming symbol. The
 primary function name is the external reference which the
 Linker attempts to resolve first. If left unspecified, the
 naming symbol defaults to "_main", which is usually the primary
 function in a C program. (At the C program level this primary
 function name is specified as "main", but the leading
 underscore is added by the Compiler, as is the case for all
 symbols generated by the Compiler. It is therefore important to
 remember that, when specifying a naming symbol that is
 contained in a compiled module, the symbol will always begin
 with a leading underscore.) The filename of the module which
 contains the primary function name is normally the name that
 will be assigned to any file(s) produced as a result of a
 Linker call line.

-n
 This option prevents the Loader from being automatically
 executed when the Linker finishes. When the "-n" option is not
 specified, the Linker will normally default to calling the
 "standard" Loader (unless some other loader type has been
 optionally specified using the "-d(<c>]" option discussed
 previously).

-o=<file>
 This option is used to assign a specific name, represented by
 <file>, to the Linker's output file. If this option is not used
 the output file will be given the same name as the module in
 which the primary function name is found. If no filename
 extension is explicitly specified, the Linker output filename
 will default to having a ".RL" extension.

-P[<C>]
 This option is useful only an Unix-like operating systems, such
 as UNIX, INIX, and TNIX for example. On such systems, it causes
 the output of the Linker to be piped to the Loader rather than
 to be transferred in a temporary file. On some systems this

L.1.8

 will cause a noticeable speed, improvement. The [<c>] indicates
 an optional character which may be used to specify that the
 Linker output should be sent to a particular optional Loader
 when use of the default "standard" Loader is not desired. The
 <c> character, when specified, represents the first letter in
 the Introl name of the desired Loader, just as for the case of
 the "-d[<c>]" option described previously.

-s
 This option specifies that the output file is to be stripped of
 all non-entry defined symbols. This is useful when producing a
 partially linked module in which the user wishes to "hide" all
 the already resolved symbols. Partially linked modules are
 typically modules that have been linked, but not loaded, which
 may still contain unresolved references.

-t=<classlist>
 This option is used to define an ordered listing of those
 non-zero class numbers, between 1 and 255, which are to be
 "preferred" for use in the linking process. The <classlist> can
 be a series of one or more numbers from "1" through "255". When
 a class list contains multiple class number entries, a comma or
 period must separate successive class numbers, as in "t=3,7,4",
 for example, which specifies the classes "3", "7", and "4". The
 order in which class numbers are entered on the link command
 line is significant to the Linker and defines the order of
 class preference. The first-entered (ie left-most) class
 appearing on the link command line will be given highest
 preference for inclusion by the Linker, the second-entered
 class will be given next highest preference, and so on. Modules
 of class 0 are always considered by the Linker as having lowest
 priority and are used in the linking process only if an
 identically named module having a class number which is
 included in the linker class list specification cannot be found
 by the Linker. For example, a class list such as "t=3,7,4"
 tells the Linker to preferably use modules of class 3 (if they
 can be found), or else use class 7 modules (if they can be
 found), or else use class 4 modules (if they can be found), or
 else, as a last resort, use modules of class 0 (if they can be
 found).

The reader is referred to the Loader Appendices of this manual for
applicable Loader options that may be specified on the link command
line.

L.1.9

L.1.10

LOADER

It is the Loader's function to fix absolute addresses for the
relocated values in a relocatable module, thereby converting a
relocatable module into an "executable" output file. The Loader is
usually called automatically by the Linker but it may also be called
separately by the user. As indicated below, several different
Loaders are (optionally) available for use with Introl-C and, if the
user has elected to obtain such optional Loaders, a variety of
executable output file formats can be generated, depending on the
Loader being used.

Each resident Introl-C compiler package, and each Introl-C
cross-compiler package, nominally includes a single, specific type
of Introl Loader which is considered as being the "standard" Loader
for that compiler's particular host system configuration. For
resident Introl-C Compiler packages, the 'standard' Loader that is
furnished is an "operating system dependent" type of Loader which
generates an output file that is executable on that particular
Compiler's host system. For cross-compiler versions of Introl-C, the
"standard" Loader furnished is typically a "hex" type Loader that
generates a file of output load records, which can be either
Motorola S-Records, intel Hex, Tektronix Hex, or Tektronix Extended
Hex at user option. Besides the "standard" Loader that accompanies
any given Compiler type, it is also possible for the user to
optionally obtain and use other compatible "cross-Loaders" which
generate output formats unrelated to the Compiler's host operating
system. For example, "hex-type" Loaders are optionally available for
use with resident versions of Introl-C; "operating system dependent"
type Loaders are optionally available for use with cross-compiler
versions; etc.

There are, therefore, several different species of Loaders, (as well
as several different types of related Standard Libraries) that may
potentially be used under Introl-C. The "standard" Loader supplied
with your Introl-C package, as well as any other Loaders that may
have been optionally ordered, are described in detail in the Loader
Appendix of this Linker Reference Manual. This Loader section
describes the general features that are common to all Loader types.

Normally the input to the Loader is expected to be a relocatable
file which has no unresolved external references; if unresolved
references do exist in its input, loading will normally not be
successful. A Loader option is provided, however, to force a file to
be loaded even if it contains unresolved references.

Usually a relocatable file has to be linked before it can be used as
input to the Loader. It is also possible, of course, to assemble a
file which makes no external references and then use the relocatable
output file produced by the Assembler directly as input to the
Loader (ie without having actually linked it).

L.2.1

LOADER COMMAND LINE

The "standard" Loader supplied with your Introl-C package (see
Loader Appendices to this manual) is normally automatically called
by the Linker when the Linker pass finishes. However, linker command
line options exist (see Linker Section of this manual) that mav be
used to alternatively force the Linker to automatically call other
optional Loaders (assuming such optional Loaders have been obtained
for use). Situations also arise when it is desirable to explicitly
call the Loader alone, without first executing the Linker. When such
situations arise, the Loader may be independently called by the user
with a loader command line of the general form:

<c>ld <file> {<option>}

where <c>ld represents the Introl filename of the specific Loader
being called, <file> is the name of the (linked) relocatable module
which is to be loaded, and (<option>) represents zero or more Loader
option specifiers.

Each of the potentially usable Introl Loaders is uniquely identified
by a 3-letter Loader filename, the last two letters of which are
always "ld". The <c> designator indicated in the "<c>ld" loader call
on the command line therefore represents the first letter in the
three-letter Loader name. For example, to call the Introl hex type
of Loader, which has the filename "hld", the "<c>ld" entry on the
command line would actually become "hld". For further specifics on
the names of the loaders which can be legally accessed, refer to the
Loader Appendices of this manual.

The relocatable file that is input to the Loader is expected to have
a filenarne extension; if none is specified, the default filename
extension ".RL" is assumed. Normally the name of the executable
output file will be identical to the name of the input file, but
with a filename extension typically added by the Loader. The
filename extensions each Loader appends are discussed in the Loader
Appendices to this manual.

LOADER OPTIONS

Each type of Loader available for use with the Introl-C has its own,
generally unique set of options. The specific options that apply to
each Loader furnished are discussed in the Loader Appendices.

When the Loader is being called separately, Loader options are
specified directly on the loader command line when the Loader is
being automatically called by the Linker, Loader options are
specified on the link command line, together with the Linker
options. If Loader options are specified on the link command line,
any such options (ie those that do not apply to the Linker) will be
automatically sent on to the Loader. For the most part Linker and
Loader option specifiers tend to be distinct, so that there is
little ambiguity when Loader options are specified on the link
command line.

L.2.2

LIBRARY MANAGER

This section describes the features and operation of the Introl
Library Manager.

For a program to be succesfully linked and loaded, all its external
references must be resolved. That is, any functions which are
referenced by the program but not included in the program must be
added to it at link time. The Linker can be directed to search
various files to find already compiled functions which satisfy these
references. When it finds a piece of compiled code which satisfies a
reference it includes the code in the resultant program. Any
compiled or assembled file may be a legitimate input to the Linker.
To facilitate the Linking process, it is often useful to have a file
which contains more than a single piece of compiled code so that the
user can specify a whole series of routines to the Linker with a
minimum of fuss. Such a file is called a library file, an example of
which is the introl-C Standard Library (libc.R). The Linker can
search a library file and selectively extract only those modules it
requires to link the file.

LIBRARY FILES

A library file is a file which contains one or more linkable object
modules of the type produced by the Introl Assembler. When a file is
compiled and assembled, the result is exactly one linkable module
which is placed into a file. This file is actually a library which
happens to contain only a single module. When the user links a
program, one or more of these "libraries" are specified on the link
command line. Usually the "libraries" are those produced as a result
of a compilation and contain only a single module, however, they may
also contain several modules. The Library Manager, "libman", is a
program which allows the user to place several modules into a single
library file. When the user has a large set of modules which are
commonly used in programs, it is usually convenient to place them
all in one library and then simply specify the library once on the
link command line. The Linker will extract only those modules it
requires in order to satisfy the external references of the program.

The Linker is designed to automatically search the "Standard
Library", libc.R, if it still has external references to satisfy
after it has exhausted all the alternatives provided by the modules
specified an the link command line. For many C programs, the
Standard Library is usually where most of the external references
are satisfied. Many users find it useful to add to, or modify
routines in, the Standard Library.

The Library Manager is the utility program which allows the user to
create new libraries and also to maintain existing ones.

LIBRARY MANAGER

Because any file that is produced by the Assembler is already
technically a library file, the Library Manager can correctly be

L.3.1

looked upon as a program which manipulates libraries. Its input is a
library file, such as a linkable object file produced by the
Assembler. Thus, in the description below, references to "libraries"
also implicitly includes those files output by the Assembler.

The Library Manager is called by entering a command line of the
form:

libman <lib> {<optional-direct-command>}

where <lib> is the name of the library to be edited and
<optional-direct-command> is an optional command to the Library
Manager. If the <optional-direct-command> entry is omitted, the
Library Manager will enter its "Interactive Mode" of operation and
solicit library management commands from the user terminal.

The input library specified by <lib> may be either a new library or
an existing one and, unless the user takes contrary action, it will
also be the nane of the output library.

MODES OF OPERATION

The Library Manager has three modes of operation: Direct Mode,
Interactive Mode, and Command File Mode. The most convenient to use
for simple additions and deletions to the library is the Direct
Mode. For more extensive modifications the user may instead wish to
use Interactive mode. The third mode is the Command File mode which
causes the Library Manager to read its commands from a file rather
than getting them from the user terminal.

Direct Mode: In Direct Mode the user is permitted to specify a
single command on the library manager command line. When the Library
Manager is called, it executes this single command function and then
immediately exits from the Library Manager. When modifying
libraries, however, a single command function is often all that is
necessary to accomplish the change desired by the user. When Direct
Mode is being used, the desired command is specified right on the
command line, following the <lib> library specification. Any Library
Manager command may be used in the Direct Mode.

Interactive Mode: if no command is specified on the Library Manager
call line, the Library Manager will enter its Interactive Mode of
operation. In Interactive Mode the Library Manager will print a
colon (".") as a promet and will accept a succession of commands
directly from the user terminal. Interactive Mode is useful when the
user must make extensive changes to a library, or when the user
wishes to step through the library checking and/or changing modules
in an "interactive" manner. Once selected, the Interactive Mode will
remain in effect until the user enters a "quit" or "omit" command.

Command File Mode: One of the commands which the user can specify as
an Interactive code or a Direct Mode command entry is the "Comfile"
command. This command instructs the Library Manager to read
subsequent instructions from a command file. When a "Comfile"

L.3.2

command is entered, the Library Manager will read from the file
specified until it reads a "quit" or "omit" command or,
alternatively, until it reaches the end of the file. when exiting
the Command File Mode, the Library Manager will return to whatever
mode it was in before the Command File Mode was entered. If the
Command File Mode was entered as the result of a Direct Mode
command, then the Library Manager will terminate when Command File
Mode is exited. If entered from the Interactive Mode, it will return
to the Interactive Mode.

LIBRARY MANAGER COMMANDS

In the descriptions that follow, the commands may be abbreviated to
the characters shown in capital letters. For simplicity, the
descriptions are specified in a BNF type form. In this form items
enclosed in angle brackets "<" and ">" represent names or numbers to
be chosen by the user. Items enclosed in square brackets "[" and "]"
represent optional items. Anything enclosed in curly brackets "{"
and "}" may be repeated zero or more times. These "meta" characters
(ie <,>,{,},[, and]) are just to help the user understand what is
required and should not actually be typed in. Thus the "delete"
specification ...

Delete {<module>{,<class>])

means that the delete command (which may be abbreviated to just "d")
requires zero or more user-specified module names, each of which may
have an optional class specifer which is separated from the module
name by a comma.

In the following:

<module> refers to the name of a module (which should consist
 of a series of characters). The first character may
 not be a digit.

<file> refers to any legal file or path name.

<class> is a number from 0 to 255 which represents a module's
 class number.

Thus a legal example of the delete command could be:

d modulea,2 moduleb modulec, 0

which would cause three modules to be deleted; the class 2 "modulea"
module, the class 0 "moduleb" module, and the class 0 "modulec"
module.

Add {<file>{,<module>f,<class>]}}
The add command is used to add modules to an existing library or to
create a new library. It consists of the word "add", which may be
abbreviated to "a", followed by one or more filenames, each of which
may be followed by zero or more module specifications, each of which

L.3.3

may include a class specification. It is possible to add modules at
a specific place in the library (see the "find", command) but for
most linking applications it makes no difference where a module is
located in the library. In Direct Mode, the add command will add
modules to the end of a library. In Interactive Mode or Command File
Mode, the Library Manager can be directed to add a module anywhere
in a library. The argument to the add command is a filename which
should contain at least one linkable module (such as that produced
by a compilation). The filename may be followed by any number of
module names. If there are no specifications following the file
name, the Library Manager will attemct to add all of the modules
contained in the file. If specific nodules are named, the Library
Manager will attempt to add only those modules from the named file.
Any module may have an optional class specification, which is a
numeric specifier in the range of 0 to 255. If the class
specification is not present, the first module encountered having
the specified module name, regardless of its class, will be added to
the library; otherwise only a module with a matching name and class
will be added. The add command will not add any module whose name
and class match one already existing in the library.

Delete {<module>{,<class>]}
This command allows the user to delete modules from a library. The
delete command will attempt to delete the named modules, taking into
account the module's class, if it is specified. If the class
specifier is omitted, and there is more than one module having the
specified name in the library, the delete command will print a
warning message and will not delete the module. The user may then
delete the module by specifying the class of the module which is to
be deleted.

The delete command will print a warning message if no module name is
specified.

Revlace {<file>{,<module>{,<class>]}}
The replace command is used to replace modules in an existing
library. It consists of the word "replace", which may be abbreviated
to "r" followed by one or more filenames, each of which may be
followed by zero or more module specifications, each of which may
include a class specification. The argument to the replace command
is a file name which should contain at least one linkable module
(such as that produced by a compilation). The filename may be
followed by any number of module names. If there are no module
specifications following the file name, the Library Manager will
attempt to replace all of the modules contained in the file. If
specific modules are named, the Library Manager will attempt to
replace onlv those modules. Any module may have an optional class
specification. If the class specification is not present, the first
module with a matching name, regardless of its class, will be
replaced in the library; otherwise only a module with a matching
name and class will be replaced. The replace command will only
replace a module whose name, or name and class (if both are
specified), match a module already in the library.

L.3.4

Quit
This command quits the Library Manager, first saving the library
file if it has changed. This command may be abbreviated to "q".

OMIT
This command directly exits the Library Manager without saving the
library that was being edited. You may want to remember this one in
case you hopelessly mess up a library file (although that shouldn't
be cause for panic since the Library Manager always makes a backup
file). Notice that there is no abbreviation for this command.

List {<module>{,<class>}}
The list command will print out information an the named modules. If
no modules are specified, the list command will print out
information on all of the modules in the library.

SList {<module>[,<class>]}
This is a short form of the List command. It prints out an
abbreviated listing containing only the module name, class, and
revision of each named module. If no modules are specified, this
information will be printed for all modules in the library.

Help
The help command allows the user to obtain on-line help when using
the Library Manager. It assumes there is a help text file available.
The help command will print a menu and request a number from the
user; it then prints the associated message and enters Interactive
Mode.

LOad {<file>}
When anything is done involving a library which is currently not in
memory, it is automatically loaded. The "load" command may be used
to explicitly load a library without actually doing anything with
it. Loaded libraries are not the same as the library you are
editing; it is simply a library whose module information is in
memory. When a module is from a library, for example, the
module information for the entire library is loaded into memory so
that the Library Manager can more quickly reference it. Before a
file is loaded, the memory is checked to see if the file has already
been loaded. A file is never loaded more than once. The "load"
command may be abbreviated to "lo".

The reason a user may want to load a library explicitly is so the
contents of a loaded library may be listed and examined using the
load-list command as described below.

LList {<file>}
The LList command allows the user to list a loaded library. When
used with a library name, the LList command will list the contents
of the named library. When specified without any library name the
LList command will list the names of all the currently loaded
libraries. The "llist" command may be abbreviated to "ll".

L.3.5

SLList {<file>}
This command provides an abbreviated load-listing, including only
the module name, class, and version. When this command is used
without any library name specified, it will list the names of all
currently loaded libraries. The "sllist" command may be abreviated
to "sll".

Save {<file>)
The save command will force the Library Manager to save the library
using the filename indicated by <file>. If no filename is explicitly
specified, the library will be saved using the library name
originally specified on the command line. As a safety measure, any
time a file is saved the Library Manager will make a backup copy of
any file which would have been overwritten by the save process. It
will append a ".bak" extension to this backup file. The Library
Manager will automatically save the library whenever the user exits
using a "quit" command.

Comfile {<file>}
This command will direct the Library Manager to execute commands
read from one or more specified files until it reads a "quit" or
"omit" from the specified files or, alternatively until the end of
the file is reached. An error message will be printed if no file is
specified. The "comfile" command may be abbreviated by "c".

Echo {<any-string>}
This command simply echos the specifed strings to the terminal. This
command can be useful in a command file to inform the user of its
progress.

INTeractive
This command will explicitly place the Library Manager in
Interactive Mode. Needless to say, it has no use when already in the
Interactive mode, and very little use as a Direct Mode command
(since the user can more readily enter Interactive Mode by simply
not specifing any command whatever when calling the Library
Manager). It is potentially useful in the Command File Mode,
however, and can be included in a command file to force a return to
the interactive Mode. The "interactive" command may be abbreviated
as "int".

Find {<module>{,<class>]}
This command is used to "find" the module whose name and class is
given.

There is a pointer in the Library Manager which points to what is
known as the "current" module. When the Library Manager starts, the
"current" module is the last-occurring module in the library being
edited (assuming there are any modules in the library being edited).
When an "Add" command is executed for example, the newly added
modules are added following the "current" module. Almost every
command has some effect on which particular module in the library is
considered as being the "current" module after the commanded action
has been completed. Following an add command, for instance, the

L.3.6

"current" module will become the last module that was added because
of that add command. The list command also causes the current module
to become the last module that is actually listed. In this manner,
user command inputs continuously alter which specific module is
actually considered the "current" module at any give time.

The find command can be used to explicitly define the current module
to be any specific module in a library. Thus, if the user wishes to
place a module in a specific place within the library, he can "find"
the module which is to immediately precede the new module, and then
"add" the new module. This will cause the new module to be placed
immediately after the module that was "found" using the find
command; this, of course, would also cause the "current" module to
then become the newly added one.

The find command will attempt to move the "current" module pointer
to the named module. It starts searching from the current module and
continues until it reaches the bottom of the file, at which point it
starts searching from the top of the file. It searches in this
manner until it finds the named module, or until it reaches the
original current module. If no module class is specified, the find
command will stop at the first module it encounters that has the
specified module name, regardless of its module class number;
otherwise it will attempt to find a module which has both the name
and class specified in the find command.

Print {<module>[,<class>]}
This command causes information to be printed for the named modules.
If no modules are specified, it will print information on the
"current" module.

SPrint {<module>[,<class>]}
This command works just like the Print command except it prints an
abbreviated listing which includes only the name of the module, its
class, and its revision.

Insert {<file>{,<module>f,[class>]}}
This command is similar to the "Add" command except, rather than
placing the named modules after the "current" module, it will place
them proceeding the current module in the library. When the Insert
function finishes, the last module that was inserted then becomes
the current module.

Stepping Through The Library
When editing a library using the Library Manager, a pointer exists
which indicates the "current" module (as was described previously
under the "find" command). This pointer is used as a starting point
for searches when adding, exchanging, and deleting modules. It also
points to the module which will be printed out by a "print" command
when print is used without arguments. Most of the commands affect
the value of this pointer, usually leaving it pointing to the last
module that was referenced. There are several ways for the user to
change the "current" module pointer. One is via the "find" command
(see the Find command, above). For example, the following command

L.3.7

moves the painter to a module named "thing":

find thing

The user may also move the current module pointer around in a
"relative" fashion by specifing a signed integer on the line. For
example, the following will move the pointer backwards four (4)
modules:

-4

By comparison an entry such as:

+2

will move the pointer forward two (2) modules.

It is also legal to specify one or more successive minus ("-")or
plus ("+") signs to indicate the total number of modules to move
backward or forward. For examole, a single minus or plus sign would
move the pointer backward or forward one module, respectively. Two
minus or two plus signs will move the pointer backward or forward
two modules respectively (one for each symbol), and so on. It is
also legal to move the pointer to a module located an absolute
number of modules from the begining of the library; this is done by
entering an unsigned number. For example, entering:

12

will move the pointer to the twelvth module in the library.

Any time one of these commands is executed, the Library Manager will
print the name of the resultant current module. If one of these
commands attempts to move the "current module pointer" above the top
or below the bottom of the library, the Library Manager will print
"TOP" or "BOTTOM" respectively.

CRstep
Executing this command toggles a flag which, when "on", causes a
carriage return to act like a plus ("+") sign. This then allows a
user to step down through the library, one module at a time, by
simply hitting the carriage return. The CRstep command toggles this
feature on (if previously off) or off (if previously on) with each
execution. Therefore, if this feature has been previously selected
to be "on", it can be selected to be "off" by simply re-entering the
CRstep command once again.

QUIET
This command will prevent the Library Manager from printing out the
name of the current module when the "current module" pointer moving
commands are used. The "quiet" command may be abbreviated by "quie".

Additional Notes
If the user wishes to write out a module which is in a library, this

L.3.8

can be easily done by a command of the type:

libman newmod add oldlib,mod

For the filenames used in this example, this instructs the Library
Manager to make a new library, called "newmcd", which contains a
single module, called "mod", which was obtained from a library
called "oldlib".

L.3.9

L.3.10

APPENDICES

This section contains miscellaneous reference information which may
be useful to the programmer.

 Appendix A Linkable File Format L.A.1
 Appendix L* Loaders L.L*.l

A.1

A.2

APPENDIX A

LINKABLE FILE FORMAT

The following is the linkable file format which is expected by the
Introl Linker and Loader.

There is no difference between a library file and a linkable object
file as produced by the Assembler, other than the fact that a
linkable object file contains only a single module whereas a library
usually contains multiple modules. In the special case of a file
which contains only a single module, it is permissible to have a
text size specified as zero even though the text has a non-zero
length. When a multi-byte value is specified, the most significant
byte is assumed to appear first.

INTROL LINKABLE BINARY FILE FORMAT

HEADER
 2 bytes Magic #
 2 bytes Number of module descriptors in this file
 1 byte Checksum of header

MODULE DESCRIPTOR (repeated for each module)
 4 bytes Offset to module text in file
 4 bytes Size of text (may be zero if
 single module in this file)
 2 bytes Size of string area
 1 byte Module class
 1 byte Module revision
 4 bytes Relocatable segment @ax sizes

 |SF|SE|...|S7|S6|...|S0|

 Sn is a two bit max size specifier:
 00 one byte max size
 01 - two byte max size
 10 - three byte max size
 11 - four byte max size

 4 bytes Relocatable segment size descriptors

 |SF|SE|...|S7|S6|...|S0|

 Sn is a two bit descriptor size value:
 00 - no size
 01 - one byte size
 10 - two byte size
 11 - four byte size

 { 0..4 bytes segment 0 size }
 { 0..4 bytes segment 1 size }
 .
 .
 .

L.A.1

 { 0..4 bytes segment F size }

 2 byte symbol count

 For each symbol up to symbol count:

 2 bytes Offset of identifier in string area
 2 byte Descriptor value

 |SZ|XXXXX|N|E|I|R|A|SEGM|

 SZ is the descriptor of the symbol's value
 00 - the value is zero
 01 - the value follows in one byte
 10 - the value follows in two bytes
 11 - the value follows in four bytes

 X is reserved
 N set if the symbol is an entry point
 A set if the symbol is absolute
 E set if the symbol is exported
 I set is the symbol is imported
 (both E and I are set if the symbol
 is undefined segment imported)
 SEGM is the segment the symbol resides in if
 non-absolute.

 { 0..4 byte symbol value }

 The module descriptor string area starts here. The strings in
 the string area are null terminated ASCII character strings.
 The first string in the string area is the module name.

PROGRAM TEXT (follows all module descriptors in the file)

 The basic text format is:

 |CM|MODIFY| { 0 or more operand bytes }

 CM is the two bit command.
 MODIFY is 6 bits of command specific info.

 code 00 - Special function

 |00|FNCODE| {|function specific operands|}

 FNCODE is a six bit special function code:

 0 - end of text
 1 - set byte size relocation
 2 - set word size relocation

L.A.2

 3 - set long size relocation

 codes 4-15 are Loader commands

 4 -reserved
 5 -reserved
 6 - "
 7 - "
 8 - "
 9 - "
 10 - "
 11 - "
 12 - "
 13 - "
 14 - "
 15 - "
 Multiple byte commands
 The byte count is represented in the lower
 two bits as follows:
 00 - the byte count follows in one
 byte
 01 - the operand follows in one byte
 10 - the operand follows in two bytes
 11 - the operand follows in four bytes
 16 - reserved
 17 - skip with one byte byte count
 18 - skip with two byte byte count
 19 - skip with four byte byte count
 20 - reserved
 24 - reserved
 28 - reserved

 Segment set commands

 32 - set segment 0
 33 - set segment 1
 34 - set segment 2
 .
 .
 46 - set segment E
 47 - set segment F
 48 - reserved
 49 - "
 .
 .
 63 reserved

 coce 01 - pass absolute text
 |01|TCOUNT| |TCOUNT bytes of text|

L.A.3

 TCOUNT - is the number of bytes to pass
 (1-64). If TCOUNT == 0 then
 byte count is 64.

 code 10 - offset relocation command

 |10|R|X|SEGM| |relocation size offset|

 Relocation is done in the previously
 specified relocation size. The result
 is the proper relocated datum with the
 base of the given segment in this module
 added to the following offset. If the
 relative bit is set, the result is the
 proper relocated datum with the result
 being equal to the relocated value minus
 the value of the location counter follow-
 the relocated value.

 R - set if the relocation is relative
 X - is reserved
 SEGM - is the segment # to relocate with

 code 11 - symbol relocation command

 |11|R|XX|S|OF |one or two byte symbol #| {|offset|}

 Relocation is done in the previously
 specified relocation size. The result
 is the proper relocated datum with the
 result being equal to the value of the re-
 solved symbol plus the optional following
 offset. If the relative bit is set, the
 result is the proper relocated datum
 with the result being equal to the
 relocated value minus the value of the
 location counter following the relocated
 value.

 R - set if the relocation is relative
 XX - reserved
 S - 0 if one byte symbol #, 1 if two byte sym. #
 OF - size of the following offset

 00 - zero offset
 01 - byte offset
 10 - word offset
 11 - long offset

L.A.4

APPENDIX LF

FLD LOADER
OPTIONS AND RUNTIME ENVIRONMENT

The Introl Loader which generates Flex format output files is called
the "fld" Loader.

The fld Loader is the "standard" Loader that is furnished with the
part number FC6809 Introl-C Compiler and, as such, is the the Loader
normally called by the FC6809's Linker when it finishes linking. The
fld Loader is also optionally available for use with other versions
of Introl-C (ie for Introl-C packages that do not themselves run
under the Flex operating system) and, in such cases, is considered
as being an "optional" Loader for these versions. (Refer to the
"-d[<c>]" option discussed in the Linker section of this manual.)

The loader command line call for the fld Loader is of the form:

fld <filename> {<options>}

where <filename> is the module to be loaded and <options> are zero
or more fld Loader option specifiers.

The fld Loader expects its input to be a relocatable module as
produced by the Introl Linker, with any applicable "standard
library", references having been being resolved using the FC6809
Standard Library. The fld Loader produces an output that is
compatible with, and executable under, the Flex operating system.
Executable files generated by the fld Loader are characterized by
the filename extension ".CMD", which the fld Loader automatically
appends to its output file.

Unless otherwise indicated, the following options for the fld Loader
may be specified on either the linker command line (the typical case
when the Loader is being automatically called by the Linker) or on
the loader command line (when the Loader is being called
independently by the user).

OPTIONS

-a=<sec>:<seg>{,<seg>}
 Assign segment to a section; where <sec> represents a Flex
 program segment which should be either "text", "data", or
 "bss", and <seg> is a segment number in the range 0 to 15. This
 option allows the user to override the default settings for
 placement of program segments.

-c=<file>
 Get additional parameters from a command file; where <file> is
 the command file filename. This option allows the user to
 specify an unlimited number of parameters by placing them, one
 to a line, in the named text file.

L.LF.1

-l[s][=<file>]
 Produce an output listing; where the "s" character is an
 optional entry, and <file> is an optional filename. This option
 forces the Loader to generate an output listing. If the
 optional s character is specified, the listing will contain
 symbol information. If the optional filename specification is
 included, the listing will be placed in the named file.

-o=<name>
 Set output file name; where <name> is to be the name of the
 output file. If this option is omitted, the output file name
 will be that of the input name. If no filename extension is
 explicitly defined, the default extension ".CMD" will be
 assigned.

-W
 Make an executable file no matter what! This option will cause
 the Loader to produce an executable output file even if there
 are still unresolved external references. It is not guaranteed
 as to what the result will be if the program actually attempts
 to access one of these unresolved items.

-y[{t|d|b}]=<origin>
 Set origin; where the "t" or "d" or "b" character is optional,
 and <origin> is a hexadecimal number. This option may be used
 to set the origins of the text, initialized data, and
 uninitialized sections of the output file. If no t or d or b
 character is specified, or if the t character is specified, the
 text section will be placed at the location indicated by
 <origin>. If the d character is specified, the initialized data
 section will be placed at the location indicated by <origin>.
 If the b character is specified, the bss (uninitialized data)
 section will be placed at the location indicated by <origin>.
 if this option is not specifed, the text section will default
 be being placed at the zero origin, and will be immediately
 followed by the initialized data section, which will be
 immediately followed by the uninitialized data section.

-Z
 Zap the input file. This option deletes the input file after
 the Loader has finished using it. When the Linker automatically
 calls the Loader, the Linker normally specifies this -z option
 as part of the call to cause the Loader to delete the file
 produced by the Linker (ie the intermediate ".RL" extension
 file) when it is no longer needed for loading purposes.

L.LF.2

RUNTIME DATA MEMORY MAP

The runtime memory map shows the layout of the data space which a
program has available during execution. The data appears in two
areas, one of which is placed toward the low end of memory and
another which is placed at the high end of memory (below the Flex
operating system). The heap is placed in the low end of memory and
grows upward by asking the operating system to enlarge its memory
space. The stack is placed in the area at the high end of memory.

 DATA MEMORY MAP

 (low memory)
TEXT SECTION Program Text

DATA SECTION External and Static area
 (initialized)

BSS SECTION (unitialized)

 Dynamic Memory Heap

 .
.
.

 SP -> Stack Area

local variables and
subroutine linkages

 Parameter area

(high memory)

Introl-C is a registered trademark of Introl Corp.
Flex is a trademark of Technical Systems Consultants, Inc.

L.LF.4

INDEX

class list, linker 1.3, 1.4, 1.9 linker filenames 1.8
command file, library manager 3.2 linker input files 1.1
command files, library manager 3.6 linker listing 1.8
command files, linker 1.6 linker operation 1.2
command line, linker 1.1 linker options 1.6
command line, loader 2.2 linker output files 1.1
commands, library manager 3.3 linking, partial 1.3
compiler-generated symbols 1.8 listing, linker 1.8
entry point specification 1.7 loader calls 1.6, 1.8, 2.1
entry point symbol 1.2 loader command line 2.2
filenames, linker 1.8 loader filenames 2.2
filenames, loader 2.2 loader names 2.2
files, library 3.1 loader options 2.2
input files, linker 1.1 module class number 1.3
libman 3.1 naming symbol, primary function 1.8
library files 3.1 operation, linker 1.2
library manager 3.1 options, linker 1.6
library manager call line 3.2 options, loader 2.2
library manager command file 3.2 output files, linker 1.1
library manager command files 3.6 partial linking 1.3
library manager commands 3.3 primary function name 1.2
linker class list 1.3. 1.4, 1.9 primary function naming symbol 1.8
linker command files 1.6 symbols, compiler-generated 1.8
linker command line 1.1

INTROL-C/6809

C LANGUAGE DEVELOPMENT SYSTEM

Introl-C/6809 is a powerful C language compiler system that is designed to facilitate the development of
high-efficiency software for the 6809. The Introl-C package includes a C Compiler, 6809 Relocating Assembler,
Linker, Loader, Library Manager, and Standard Library. It has been in the field since early 1982 and has
gained widespread acceptance among users for its reliable and comprehensive support of the C language as well
as its ease of use. Its ability to generate exceptionally compact, fast executing code has long distinguished
the Introl-C implementation as being the most efficient high level language that is available for the 6809
and has resulted in Introl-C's widespread use in the industrial community for development of process control
software. Programs developed using Introl-C are typically within 15 to 20% or less of the size and speed of
programs written entirely in 6809 assembler. For the particular case of the Eratosthenes Sieve Benchmark, the
p/n UC6809 resident Introl-C Compiler, for example, produces a 176 byte compiled module, a total program size
of 2007 bytes, and a program execute time of 8 seconds on a 2 Mhz 6809.

Code produced under lntrol-C is re-entrant, relocatable, and ROMable and may be installed on any 6809 target,
including ROM-based systems. No fees or royalties of any type are imposed on object code programs developed
using the compiler. Introl-C/6809 is available as resident software for 6809-based hosts running UniFlex,
Flex, or 0S9. Cross-software versions of Introl-C are available for PDP-11 based hosts running UNIX (or any
of the URIX look-alikes such as TNIX, VENIX, etc), PDP-11 based hosts running RSX11M, and also for IBM PC
hosts running PC DOS or MDOS.

Introl-C is designed to the standard C language specification defined by Kernighan & Ritchie and supports all
features of the language except fields, doubles, and the #if and the #line preprocessor directives (all
other preprocessor directives, including #ifdef and #ifndef, are fully supported). Extensions to the
standard language include provisions to permit nesting of comments, use of separate name spaces for all union
and structure member names, and provision to allow symbol names up to 90 significant characters in length.
Most C source programs developed using Introl-C are directly usable as input to standard UNIX C compilers.

User interface is designed for case of use permitting C source files to be converted into executable outputs
with a minimum of effort on the part of the programmer. For example, a single command line entry of the form:
 icc filename (options]
will cause a C source file to be fully compiled and assembled to produce a relocatable object module.
Similarly, relocatable modules may be linked and automatically loaded to produce an executable output via a
simple command line entry of the form:
 ilink filel [file2 file3 ...] [options]
Numerous options are supported to permit versatile, user-controlled alteration of the standard compilation,
assembly, linking and loading processes. Option specifications, however, are generally required only for
specialized circumstances since the defaults for unused options are designed to select standard conditions
that "make sense" for the great majority of program development situations.

The C Compiler is a 4-pass program that generates an optimized assembly language file as its output. In
normal use, the 4 sequential compilation passes execute automatically and are followed by automatic execution
of the included Assembler, thus resulting in a fully compiled, fully assembled relocatable object module as
the result of a typical compiler call. The intermediate assembly language file generated by the C Compiler is
available to the user, however. Compile time options include capability for the user to selectively place
data of a given type under any of 16 different location counters (ie "segments"), ability to generate either
position-dependent or position-independent code and/or data, and capabilities for specifying #define
pre-processor directives directly on the compiler call line. The 16 location counters provided by Introl-C,
and the features for generating either position-dependent or position-independent code and data, allow
significant flexibility when finished programs are to be placed in ROM.

The included R09 Assembler is a full-featured 6809 Relocating Assembler. Although nominally furnished to
provide automatic assembly of the C Compiler's output, the Assembler may also be called directly by the user
for converting user-written assembler text files into relocatable object modules. The Assembler supports all
addressing modes of the 6809, recognizes all standard opcodes, and will accept arbitrarily complex
assembly-type input expressions. A unique feature of the Introl Assembler is its assignment of a
user-definable "class" identifier to each module it produces which is used (in combination with the module's
name) for identification purposes by the Linker. This feature allows the user to create (and the Linker to
distinguish between) multiple versions of identically-named C support functions within the Standard Library,
for example, and provides the basis for a powerful and convenient link-time capability for tailoring the link
process to minimize runtime overhead in the final program.

The Linker accepts any number of relocatable modules as input and produces a single relocatable module as its
output. Multiple-pass linking is supported. The Linker also supports "partial linking", wherein several
component modules of an overall program may be linked together to form a single resultant "partially linked"
module which may then be reused as input in subsequent linking operations. Linked programs up to 64K in size
may be produced.

Although a specific host-related Loader is supplied with each Introl-C software package, any of four
different types of Introl Loaders are potentially usable with any of the Introl-C compiler systems: a FLD
Loader, which generates a file of output load records in hex format (Motorola S Records, Intel Hex, Tektronix
Hex, or Extended Tektronix Hex formats); a ULD Loader, which generates outputs that are executable under
UniFlex; a FLD Loader, which generates outputs executable under Flex; and an OLD Loader, which generates
outputs executable under 0S9. The loader supplied with P/N XC6809, RC6809, and PC6809 cross-software packages
is the HLD Loader; the ULD Loader is supplied with the P/N UC6809 package; the FLD Loader is supplied with
the P/N FC6809 package; and the OLD Loader is supplied with the P/N 0C6809 package. Any of these several
Loader types, however, is also optionally available, at extra cost, as a "cross-loader" for use with any
resident or cross-software version of Introl-C. The HLD loader is particularly useful when developing
 software for standalone, ROM-based applications.

The Standard Library contains an extensive collection of C programming support functions, including I/0 and
arithmetic functions not directly performed by the 6809. Only those library functions actually required for
program execution are extracted by the Linker, resulting in minimum runtime overhead in developed programs.
The library furnished with each of the several resident versions of Introl-C is host-O.S.-specific in nature
whereas the library supplied with cross-software versions is operating-system-independent and is tailored for
use in standalone-target applications. Standard Library source code is available as an extra cost option.

The Library Manager provides convenient and versatile capabilities for adding. deleting. and modifying
Standard Library functions, thus permitting unique libraries of C support functions of any type to be created
by the user. All library functions are stored in linkable format, thus avoiding any need for recompiling them
before each use. The Library Manager, in combination with the Linker, significantly reduces development times
for large programs by allowing individual parts of the program to be independently developed and compiled
with a minimum of effort.

TRADEMARKS: Introl-C is a registered trademark of Introl Corporation; Flex and UniFlex are trademarks of
Technical Systems Consultants; 0S9 is a trademark of Microware Systems; UNIX is a trademark of Bell
Laboratories; TNIX is a trademark of Tektronix Inc; VENIX is a trademark of VenturCom; PDP-11 and RSX11 are
trademarks of Digital Equipment Corp; IBM PC is a trademark of International Business Machines.

3/1/84

M09

6809 RESIDENT AND CROSS MACRO ASSEMBLERS

Introl's M09 resident and cross macro assemblers are designed to translate MC6809 assembly language
source programs into 6809 machine code. All M09 assembler packages include the Introl M09 Relocating
Macro Assembler, the ILINK Linker, a Loader, and the LIBMAN Library Manager. Resident versions of the
M09 software package are available for use on 6809-based microcomputers running under UniFlex, Flex, or
0S9. Cross-software versions are available for use on PDP-11 based development systems running UNIX or
RSX-11M, and also for IBM PC hosts running PCDOS.

The Assembler is a full-featured relocating macro assembler that accepts a 6809 assembly language text
file as input and produces a relocatable object file as its output. The included Linker and Loader
permit any number of assembled modules and/or library modules to be linked together and then loaded to
produce a single resultant output file in an executable format. The Library Manager provides convenient
and versatile features for the user to create, and maintain, libraries of assembled modules. Resident
assembler packages incorporate a host-specific Loader (ULD, FLD, or OLD, as applicable) that produces
output files which are executable under the assembler's host operating system. M09 cross-assembler
packages incorporate a hex-type Loader (HLD) which generates a file of output load records in any of
several hex formats: Motorola S Records, Intel Hex, Tektronix Hex, or Extended Tektronix Hex format, at
user option. Introl's HLD, ULD, FLD, and OLD Cross-Loader packages are optionally usable with any
version of M09, and are available from Introl at extra cost. The M09 Macro Assembler is fully
compatible, both in source format and object output, with the R09 Relocating Assembler that is supplied
with the Introl-C/6809 C Compiler system.

M09 supports macros and conditional assembly, recognizes the standard opcodes recognized by Motorola
assemblers, and supports the complete instruction set and all addressing modes of the 6809. The
Assembler accepts assembly type input expressions that are arbitrarily complex. Parentheses are allowed
in expressions to modify the evaluation order of operators. Symbols may be of any length, with the first
100 characters being significant and retained by the assembler. Assembly time expressions may be used in
the operand of any assembler opcode or directive. Symbols and constants may be used interchangeably in
an expression. All results of expressions at assembly time are 32-bit truncated integers.

The following assembly time options are supported by the M09 Assembler:

 -a - Place all symbols except those beginning with a "?" character in the object file.
 -c - Send Assembler's output listing to console.
 -f - Force listing of all conditionally excluded code.
 -i - Include all included files in output listing.
 -j - Include symbols beginning with a "?" character in the output listing.
 -l=(filename) - Place output listing in specified file.
 -m - Include all macro-expansion-generated code in the output listing.
 -n - Don't produce an output listing.
 -0=(filename) - Explicitly assign name to the relocatable output file.
 -p(digit)=(value) - Pass parameters to macro program being assembled.
 -q=(class) - Assign numeric class identifier to the relocatable output module.
 -s - Suppress listing of the symbol table.
 -U - Force all undefined symbols to default to imported symbols.
 -X - Don't generate an object module.
 -y=(pathname) - Search "pathname" for macro files after searching current working area.
 -z - Delete input file after Assembler has finished using it.

Assembly time expression operators supported:

 - unary minus (twos complement) & bitwise and
 ~ not (ones complement) ^ bitwise exclusive or
 * multiplication | bitwise inclusive or
 / division > greater than
 % mod (remainder) < less than
 + addition >= greater than or equal to
 - subtraction <= less than or equal to
 << shift left == equal to
 >> shift right != not equal to

Assembler directives supported:

 comm - Common Area if - Numeric Conditional Assembly
 dc - Define Data Constant ifn - Numeric Conditional Assembly
 ds - Define Data Storage ifc - String Compare Conditional Assembly
 else - Conditional Assembly Else ifnc - String Non-Compare Conditional Assembly
 endif - End Of Conditional Assembly import - External Symbol Reference
 endm - End Of Macro Text lib - Load A Disk File
 end - End Of Assembly list - Terminate Previous Nolist Directive
 equ - Equate Symbol With A Value loc - Select Location Counter
 err - Prograrmer-Generated Error macro - Define A Macro
 exitm - Exit From Macro nolist - Turn Off The Listing
 export - External Symbol Definition offset - Absolute Offset From An Origin
 fcb - Form Constant Byte repeat - Repeat The Next line
 fcc - Form Constant Character rmb - Reserve Memory Bytes
 fdb - Form Double Byte Constant set - Set Symbol To A Value
 ident - Identify Module syn - Equate Labels

...

Trademarks: INTROL-C is a registered trademark of Introl Corporation; UniFlex-and Flex are
trademarks of Technical Systems Consultants; 0S9 is a trademark of Microware Systems; UNIX is a
trademark of Bell Laboratories; PDP-11 and RSX-11M are trademarks of Digital Equipment; IBM PC is
a trademark of International Business Machines.

3/1/84

INTROL-C PRICE LIST

 1-YEAR
 MAINTENANCE
PART NO. PRODUCT DESCRIPTION PRICE DOMESTIC/FOREIGN

INTROL-C/6809 COMPILER PACKAGES
(All packages include ICC Compiler, R09 Assembler, ILINK Linker, LIBMAN Library Manager; resident
compilers include applicable host-compatible Loader and Standard Library; cross-compilers include
HLD Loader and STA09 Standard Library.

UC6809-UFX09 Resident compiler package for 6809/UniFlex host $425 $100/$135
FC6809-FIX09 Resident compiler package for 6809/Flex host $425 $100/$135
0C6809-05909 Resident compiler package for 6809/059 host $425 $100/$135
XC6809-UNXI1 Cross-compiler package for POP-11/UNIX host $2500 $500/$550
RC6809-RSXII Cross-compiler package for POP-11/RSX1IM host $2500 $500/$550
PC6809-PCDOS Cross-compiler package for IBM PC/PCDOS host $750 $200/$235
MAN-C6809 Manual only (Specify compiler type) $75 NA
MANEX-C6809 Additional Manual (Specify compiler type) $35 NA

...

LIBRARY SOURCE CODE PACKAGES

UFXO9LS-(*) Source code for UC6809 Standard library $400 $100/$135
FLX09LS-(*) Source code for FC6809 Standard Library $400 $100/$135
0S909LS-(*) Source code for 0C6809 Standard library $400 $100/$135
STAO9LS-(*) Source code for XC6809/PC6809/RC6809 (Standalone) Library $400 $100/$135

(*Note: Specify host O.S. format desired; ie whether UniFlex, Flex, 0S9, UNIX, RSX11M, or PC DOS)
...

CROSS LOADER PACKAGES
(HLD Loaders include STA09 Standalone Library; others include targeted-host-compatible Library)

HLD-UFXO9 HLD (hex format output) Loader for UC6809 compiler $150 $30/$40
HLD-FLX09 HLD (hex format output) Loader for FC6809 compiler $150 $30/$40
HL0-OS909 HLD (hex format output) Loader for 0C6809 compiler $150 $30/$40

ULD-FLX09 ULD (UniFlex format output) Cross-loader for FC6809 compiler $150 $30/$40
ULD-OS909 ULD (UniFlex format output) Cross-Loader for 0C6809 compiler $150 $30/$40
ULD-UNXI1 ULD (UniFlex format output) Cross-Loader for XC6809 compiler $300 $75/$90
ULD-PCDOS ULD (UniFlex format output) Cross-Loader for PC6809 compiler $225 $50/$65
ULD-RSX11 ULD (UniFlex format output) Cross-Loader for RC6809 compiler $300 $75/$90

FLD-UFXO9 FLD (Flex format output) Cross-Loader for UC6809 compiler $150 $30/$40
FLD-OS909 FLD (Flex format output) Cross-Loader for 0C6809 compiler $150 $30/$40
FLD-UNXI1 FLD (Flex format output) Cross-Loader for XC6809 compiler $300 $75/$90
FLD-PCDOS FLO (Flex format output) Cross-Loader for PC6809 compiler $225 $50/$65
FLD-RSX11 FLO (Flex format output) Cross-Loader for RC6809 compiler $300 $75/$90

OLD-UFXO9 OLD (OS9 format output) Cross-Loader for UC6809 compiler $150 $30/$40
OLD-FLX09 OLD (OS9 format output) Cross-Loader for FC6809 compiler $150 $30/$40
OLD-UNX11 OLD (OS9 format output) Cross-Loader for XC6809 compiler $300 $75/$90
OLD-PCDOS OLD (OS9-format output) Cross-Loader for PC6809 compiler $225 $50/$65
OLD-RSX11 OLD (OS9 format output) Cross-Loader for RC6809 compiler $300 $75/$90

 1-YEAR
 MAINTENANCE
PART NO PRODUCT DESCRIPTION PRICE DOMESTIC/FOREIGN

6809 MACRO RELOCATING ASSEMBLER PACKAGES
(All packages include M09 Macro Relocating Assembler, ILINK Linker and LIBMAN Library Manager;
resident assemblers include host-compatible Loader; cross-assemblers include HLD Loader.)

M09-UFXO9 6809 Macro Relocating Assembler (UniFlex-09 host) $250 $65/$80
M09-FLX09 6809 Macro Relocating Assembler (Flex-09 host) $250 $65/$80
M09-OS909 6809 Macro Relocating Assembler (0S9-09 host) $250 $65/$80
M09-UNX11 6809 Macro Relocating Cross-Assembler (PDP-11/UNIX host) $1200 $250/$300
M09-RSX11 6809 Macro Relocating Cross-Assembler (PDP-11/RSX11M host) $1200 $250/$300
M09-PCDOS 6809 Macro Relocating Cross-Assembler (IBM PC/PC DOS host) $375 $100/$135
MAN-MO9 Manual only (Specify Macro Assembler type) $35 NA
MANEX-MO9 Additional Manual (Specify Macro Assembler type) $20 NA

..

ORDERING INFORMATION

Introl software is available on the following floppy disk formats:

 UniFlex formats: 8" SSSD 77 track
 Flex formats: 8" SSSD 77 track; 5" DSDD 40 track; 5" SSSD 35 track
 0S9 formats: 8" SSSD 77 track; 5" DSDD 40 track; 5" SSSD 40 tratk
 PDP-11/UNIX formats: 8" RX01 Tar; 8" RX02 Tar; 8" Tektronix Tar
 PDP-11IRSX11M formats: 8" RT-11
 IBM PC/PC DOS formats: 5" DSDD

All prices are F.O.B. Milwaukee, Wisconsin. U.S.A. Prices and product specifications are subject
to change without notice. All orders must be prepaid in U.S. funds drawn on a U.S. bank or
shipped C.O.D. VISA and Master Card accepted. End users in Wisconsin, please add applicable
Wisconsin State Sales Taxes. All domestic orders should include $10.00 shipping and handling,
$25.00 for all overseas orders

Prices shown are for single-CPU use licenses. Site licensing and OEM licensing is also available.

An Introl Binary Software license Agreement must be completed and returned to Introl Corporation
prior to software delivery.

Trademarks: Introl-C is a registered trademark of Introl Corporation; UniFlex and Flex are
trademarks of Technical Systems Consultants; 059 is a trademark of Microware Systems; UNIX is a
trademark of Bell Laboratories; IBM PC is a trademark of International Business Machines; PDP-11,
RSX11, and RT-11 are trademarks of Digital Equipment Corp.

..

INTROL CORPORATION

647 West Virginia Street *** Milwaukee, Wisconsin 53204
Telephone (414) 276-2937

3/1/84

INTROL-C/6809 STANDARD LIBRARIES

(Representative Support Functions Provided)

STA09 UFXO9 FLX09 OS909
LIB. LIB. LIB. LIB. FUNCTION DESCRIPTION
...... X abs integer absolute value
...... X access determine accessability of file
...... X acct turn accounting on/off
...... X alarm send alarm signal after specified time
X X X X alloc allocate memory
X X X X atof convert string to float
X X X X atai convert string to integer
X X X X atol convert strin to long
...... X brk change core allocation
............. X cforkf fork off a program
............. X chain chain a new executable module from a C program
...... X chdir change default directory
...... X chmod change file access permission
...... X chown change the owner of a file
...... X X close close a file
X X X X cprep prepare environment for a C program
.................... X crc cycle redundancy count
X X X creat create a file
...... X X X cstart runtime preparation routine
...... X dup duplicate an open file descriptor
...... X dup2 duplicate an open file descriptor
X X X X ecvt float to string conversion
...... X X X execl execute a program
...... X execv execute a program
...... X X X exit exit a program with file cleanup
...... X X X _exit exit a program without file cleanup
X X X X _extend extend float
...... X X X fclose close file
X X X X fcvt float to string conversion
...... X fdopen open a file
...... X X fflush flush file buffer
X X X X fgets read file into string
...... X fdopen open a file
...... X X fork spawn a new process
X X X X fprintf formatted output Conversion
X X X X fputs write a string to a file
X X X X free free memory
X X X X fscanf formatted input conversion
...... X fseek seek to position in a stream
...... X fstat get file status of open file
...... X ftell tell the current position in a file
...... X ftime current time
X X X X getc get next character from a file
X X X X getchar get a character from the standard input
...... X getegid get effective group user id
...... X geteuid get effective tiser id
...... X getgid get group user id
...... X X getpid get process id
X X X X gets read input into string
.................... X getstat get status of file or device id
...... X X getuid get user
...... X gtty get status of file or device
X X X X index find first occurrence of character
.................... X intercept intercept signals
...... X ioctl control device
X X X X isalpha test for alpha character
...... X isatty test for terminal
X X X X isdigit test for digit
X X X X islower test for lower case
X X X X isspace test for white space
X X X X isupper test for upper case
X X X X itoa convert integer to ASCII string
...... X kill send a signal to a process
...... X link link to a file
X X X X longjmp non-local goto
...... X X lseek seek to a position in a file
X X X X malloc allocate memory
X X X X max return the maximum of two values
X X X X min return the minimum of two values

INTROL-C/6809 STANDARD LIBRARIES (cont'd)

STA09 UFXO9 FLX09 OS909
LIB. LIB. LIB. LIB. FUNCTION DESCRIPTION

...... X mknod make special file or directory
X X X X modf return fractional part of a float
...... X mount mount a file sub-system
X X X X movmem copy a block of memory from one location to another
...... X nice change program priority
...... X X open open a file
...... X pause stop until signal
...... X perror print error message
...... X pipe create an inter-process channel
X..... X X X printf formatted output conversion
.......X profil profile a process
...... X ptrace process trace
X X X X putc write a character to a file
X X X X putchar write a character to the standard input
X X X X puts write a string to standard output
...... X X read read from a file
.................... X readln read a line from a file
X X X X reverse reverse a string in place
...... X X X rewind reset specified file to beginning
X X X X rindex find last occurrence of character
X X X X sbrk allocate memory
X X X X scanf formatted input conversion
.................... X send send a signal to a process
...... X setgid set group user id
X X X X setjmp non-local goto
.................... X setstat set status of file or device
...... X setuid set the effective user id
...... X signal catch or ignore signals
...... X X sleep suspend execution of process
X X X X sprintf formatted output conversion
X X X X sscanf formatted string conversion
...... X stat get file status
...... X stime set the system time and date
X X X X strcat copy string
X X X X strcmp compare strings lexicographically
X X X X strcpy copy string
X X X X strlen return string length
X X X X strncat copy string
X X X X strncnp compare strings lexicographically
X X X X strncpy copy string
X X X X strsave save string in memory
...... X stty get status of file or device
...... X sync update all disks
...... X syscall C system call interface
...... X system run a command string
...... X X tell return the current file position
...... X X time return the system time
...... X times get process times
X X X X tolower convert to lower case
X X X X toupper convert to upper case
X X X X uldiv unsigned long integer divide
X X X X ulmod unsigned long modulo operation
X X X X ulmul unsigned long multiply
...... X umask set the default file access bits
...... X umount unmount a file sub-system
X X X X _unext unextend float
...... X X X ungetc push character back on input stream
...... X X X unlink delete file
...... X X wait wait for child process to terminate
...... X X X write write to a file
.................... X writeln write a line to a file

NOTE: The STA09 Library is included with cross-compiler packages and with HLD cross-loader packages; the
UNXO9 Library with UC6809 compilers and with ULD cross-loader packages; the FLX09 Library with FC6809
compilers and with FLD cross-loader packages; the OS909 Library with 0C6809 compilers and with OLD
cross-loader packages.
...

Introl Corporation * 647 W. Virginia St. * Milwaukee, Wisconsin 53204 U.S.A.
Telephone (414) 276-2937

INTROL-C BINARY SOFTWARE LICENSE AGREEMENT
(Without Maintenance Option)

Introl Corp, (hereinafter called Licensor), for and in consideration of the terms and conditions set forth
herein, and for a one-time license fee, hereby grants to Licensee, and Licensee accepts a personal,
non-exclusive, non-transferrable license to use the binary software programs named below (hereinafter
referred to as Licensed Programs) subject to the following terms and conditions:

DEFINITIONS: "Developed Programs" means any compiled or assembled program created by Licensee through use of
the Licensed Programs, including the object code generated by the Runtime Library which is supplied as part
of the Licensed Programs.

LICENSE: The Licensed Programs are supplied by Licensor solely for Licensee's internal business use on a
single Designated CPU, identified below. This use includes the right for Licensee to construct Developed
Programs using the Licensed Programs, and to sell, give away, or otherwise distribute the object code
generated by the Runtime Library in creating these Developed Proarams. Except as provided in the preceding
sentence, all right, title, and interest in and to the Licensed Programs and all related materials, including
all source code furnished by Licensor with the Licensed Programs, remains the sole and exclusive property of
Licensor. Neither this Agreement, the Licensed Programs, or any portions thereof, may be sold, leased,
assigned, sub-licensed, or otherwise transferred by Licensee, except as expressly provided herein, without
prior written consent of Licensor.

TERM: This License shall begin on the date hereof and shall remain in effect only as long and during such
period as Licensee complies with the terms and conditions specified in this Agreement. This License Agreement
may be terminated by Licensor if Licensee fails to comply with any terms or conditions specified herein. This
License Agreement shall automatically terminate upon any act of bankruptcy by or against Licensee, upon any
assignment for the benefit, of creditors of the Licensee, upon any attachment, execution of judgement or
process against Licensee or its assets, or upon dissolution of Licensee.

LIMITED PERMISSION TO COPY LICENSED PROGRAMS: Licensee shall not copy, in whole or in part, any Licensed
Programs which are provided by Licensor in machine readable form except for use by Licensee on the Designated
CPU or for backup or archival purposes. This applies to copies in any form and generated by any means.
Licensee shall maintain appropriate records of the number and location of all copies of the Licensed
Programs, or portions thereof, and shall make these records available to Licensor upon request thereof. The
original and any copy of the Licensed Programs, in whole or in part, shall at all times be the sole and
exclusive property of Licensor. Licensee shall reproduce the following copyright notice on all copies of the
Licensed Programs, in whole or in part, in any form: "Copyright 1983 by Introl Corp. Reproduction or
publication in any form prohibited. Property of Introl Corp.". Use of the copyright notice is not to imply
that the Licensed Programs have been published.

PROTECTION AND SECURITY: Licensee small not cause or permit disclosure of any Licensed Programs, in whole or
in part, in any form, to any person other than Licensee's or Licensor's employees without prior written
consent of Licensor. Licensee shall take all reasonable steps to safeguard the Licensed Programs so as to
ensure that no unauthorized person has access to them, and that no unauthorized copies, in whole or in part,
in any form, shall be made. Licensee expressly acknowledges that the Licensed Programs are confidential and
proprietary property of Licensor and agrees to receive and maintain same as a confidential disclosure.
Licensee further expressly acknowledges that unauthorized copying, use, or disclosure of the Licensed
programs, in whole or in part, in any form, does great damage to Licensor and seriously impairs Licensor's
ability to do business.

TERMINATION: Within thirty (30) days of termination of this Agreement for any reason, Licensee shall, at
Licensee's option, either (a) return to Licensor all existing copies, in whole or in part, and their related
materials, or (b) furnish to Licensor evidence satisfactory to Licensor that the original and all copies of
the Licensed Programs, in whole or in part and in any form, have been destroyed.

DISCLAIMER OF WARRANTY: Licensor makes no warranties with respect to the licensed Programs. The licensed
Programs are licensed 'as is' by Licensor, without warranty, and Licensor shall have no liability or
responsibility to Licensee or any other person or entity with respect to any liability, loss, or damage
caused or alleged to be caused directly or indirectly by the Licensed Programs.

LIMITATION OF LIABILITY: THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
LICENSEE FURTHER AGREES THAT LICENSOR SHALL NOT BE LIABLE FOR ANY LOST PROFITS, OR FOR ANY CLAIM OR DEMAND
AGAINST LICENSEE BY ANY OTHER PARTY, EXCEPT AS PROVIDED HEREIN. IN NO EVENT SHALL LICENSOR BE LIABLE FOR
CONSEQUENTIAL DAMAGES, EVEN IF LICENSOR HAS BEEN ADVISED OF, THE POSSIBILITY OF SUCH DAMAGES.

pg. 2

MISCELLANEOUS: This Agreement constitutes the entire agreement between Licensor and Licensee and supersedes
all prior agreements and representations. Licensee agrees to hold Licensor harmless on all liability
associated with Licensee's breach of this Agreement including, but not limited to, all reasonable attorney's
fees. This Agreement shall be governed by the laws of the State of Wisconsin in the United States of America
and Licensee expressly submits to jurisdiction therein by process served by mail on Licensee at its below
business address. Licensee agrees to advise Licensor of all changes in Licensee's address. Licensor's main
address is given below. If any provisions of this Agreement, or portions thereof, are invalid under any
applicable statute or rule of law, they are to that extent deemed to be omitted. The signing of this
Agreement constitutes acceptance of the terms of this Agreement. No provision in correspondence or on
Purchase Orders shall in any way modify this Agreement. Licensor represents that it has sufficient right,
title, and interest in and to the Licensed Programs to make this Agreement with Licensee.

Licensee Name:___

Normal Business Address of Licensee:

 Country: __

 Phone: __

Licensed Program Name: __ S/N __________________________

 Purchased From: ___

DESIGNATED CPU:

Mfgr: ____________________________________ Model # ___________________ S/N __________________________

LICENSEE SIGNATURE: __

 Name And Title: __

 Date: __

*

INTROL CORP. * 647 West Virginia Street * Milwaukee, Wisconsin 53204 U.S.A
Telephone: (414) 276-2937

*********** ICC COMPILER **********

-a[t|d|b|s)=(loc) - Place 'text', 'data', 'bss', or 'string' type data under (loc) location counter
-b=(directory) - Find current and subsequent C Compiler passes in (directory) location.
-c - Override default condition with respect to generation of position dependent/independent code.
-d - Override default condition with respect to generation of position dependent/independent data.
-g(c) - use alternate version of preprocessor pass for compilation (RC6809 and 0C6809 compilers only).
-i=(directory) - Search (directory) location for #include files.
-k - Display progress of compilation/assembly sequence on console.
-m(name)[=(string)] - Define (name) in preprocessor, with value (string) optionally assigned to (name).
-n - Inhibit execution of next compiler pass in the compilation sequence.
-r - Save C Compiler's intermediate assembly language output file.
-s - Disallow nested comments.
-s=(size) - Set maximum size of triple buffer.
-t=(directory) - Place C Compiler's temporary files in (directory) location.
-y=[=(n)] - Strip all identifiers to a maximum length of (n) characters.
- z Interpret "\n" (newline) characters as being carriage returns.

*********** R09 RELOCATING ASSEMBLER ***********
-a - Place all symbols except those beginning with a "?' character in the object file.
-c - Send Assembler's output listing to console.
-i - Include all included files in output listing.
-j - Include symbols beginning with a "?" character in the symbol table listing.
-l=(filename) - Place output listing in specified file.
-n - Do not produce an output listing.
-o=(filename)- Assign name to Assembler's relocatable output module.
-q=(class) - Assign numeric class identifier (0 through 255) to relocatable output module.
-s - Suppress listing of the symbol table.
-u - Force all undefined symbols to default to imported symbols.
-x - Don't generate an object module.
-z - Delete input file when Assembler has finished using it.

************* ILINK LINKER ******************
-b- Do not search the default Standard Library.
-c=(file) - Get additional link-time parameters from command file.
-d[(c)] - Call optional cross-loader named "(c)LD" when Linker finishes.
-e=(symbol) - Set entry point.
-f(string) - Search additional Standard Library named "lib(string).R"
-l[s][x][u][=(file)] - Produce a linker output listing.
-m=(symbol) - Define primary function naming symbol.
-n - Inhibit Linker from automatically calling Loader.
-o=(file) - Assign name to output file.
-p[(c)] - Pipe Linker's output to loader.
-r - Save Linker's output file (during automatic link-and-load operations).
-s - Strip output file of all non-entry-defined symbols.
-t=(classlist) - Use (classlist) classes of modules during linking process, if they are available.

************* HLD LOADER *************
-a=(seg);(placernent)[,(seg);(placement)] - Set segment memory bound (segment may begin, or end, at a
specific memory location, or specified to immediately follow, or immediately precede, another segment).
-c=(file) - Get additional parameters from command file.
-g=(type) - Set output format (Motorola S Record, Intel Hex, Tek Hex, or Extendend Tek hex format).
-h - Define EOL character to be carriage return (rather than newline character).
-l[s][=(file)] - Produce a Loader output listing.
-o=(name) - Assign name to output file.
-u=(seq) - Place uninitialized data in specified segment.
-v[(char)] - Modify Loader's symbol changing procedures for symbols beginning with non-alpha characters.
-w - Produce executable output file no nutter what.
-x (type):(ext) - Set output filename extension for specified type of hex output format.
-z - Delete loader's input file when Loader has finished using it.

************* ULD LOADER ************
-a=(sec):(seg)[,(seg)] - Assign location counter segment to UniFlex program section (text, data. or bss).
-c=(file) - Get additional parameters from command file.
-l[s][=(file)] - Generate loader output listing.
-o-(name) - Assign name to output file.
-v=(size) - Set stack section size.
-w - Produce an executable output file no matter what.
-x[=(pagesize)] - Produce output file in UniFlex segmented format.
-y=(origin) - Set text section origin at specified location.
-z - Delete Loader's input file when Loader has finished using it.

************* FLD LOADER **************

-a=(sec):(Seg)[,(seg)] - Assign a location counter segment to a Flex program section (text, data, or bss).
-c=(file) - Get additional parameters from command file.
-l[S][=(file)] - Produce an output listing.
-o=(name) - Assign name to output file.
-w - Generate executable output file no matter what.
-y[t|d|b|]=(origin) - Set origin for text, data, or unitialized section of output file.
-z - Delete input file after Loader has finished using it.

*********** OLD LOADER ************
-a=(sec):(seg)[,(seg)] - Assign a location counter segment to an OS9 program section (text, data, or bss)
-c=(file) - Get additional parameters from command file.
-l[s][=(file)] - Produce an output listing.
-o=(name) - Assign name to output file.
-V=(size) - Set stack section size.
-w - Generate an executable output file no matter what.
-x - Place executable program module and data initialization information module in separate files.
-z - Delete the input file after the Loader has finished using it.

************ LIBMAN LIBRARY MANAGER COMMANDS ************

a (file),(module)[,(class)] - Add module to library; create new library.
d (nodule)[,(class)] - Delete module from library.
r (file),(module)[,(class)] - Replace module in library.
q - Quit Library Manager 7after saving library file being edited).
omit - Exit Library Manager (without saving edited file).
l (module)[,(class)] - List information on named file.
sl (module)[,(class)] - List abbreviated information on named file.
h - Provide on-line help.
lo (file) - Explicitly load a library file.
ll (file) - List a loaded library.
sll (file) - Provide abbreviated listing of a loaded library.
s (file) - Save library using the filename indicated by (file).
c (file) - Get additional commands from named command file.
e (strings) - Echo specified strings to the terminal.
f (module)[,(class)] - Find named module.
p (module)[,(class)] - Print information for named module.
sp (module)[,(class)] - Print abbreviated listing of information for named module.
i (file),(module)[,(Class)] - Insert named module in library so it precedes current module.

..

INTROL CORPORATION
647 West Virginia Street ** Milwaukee, Wisconsin 53204 U.S.A.

Telephone (414) 276-2937

	REF
	LIB
	LOAD
	INT4

