I NTROL- C COWPI LER

REFERENCE MANUAL

The contents of this nmanual have been carefully reviewed and are
believed to be entirely correct. However, Introl Corp. assunmes no
responsi bility for any inaccuracies.

The software described in this manual 1is proprietary and is
furnished under a license agreenent fromlintrol Corp. The software
and supporting docunentation may be used and/or copied only in
accordance with said |icense agreenent.

INTROL-C is a registered trademark of Introl Corp

Introl Corp.
647 W Virginia St
M I waukee, W 53204 USA

tel . (414) 276-2937

Copyright 1983 Introl Corp.
Al Rights Reserved

Tabl e of Contents

Introl -C Conpil er Reference Manual

Table of Contents CoO
Introduction C1
Getting Started C2
Theory of Operation C3
Conpiler C 4

CQo1

C Q2

I NTRODUCTI ON

Introl-C provides a set of programs that have been designed to

facilitate the devel opment of high-efficiency software, in C for
nm croprocessor-based systens. It allows the programrer to take
advantage of all the convenience, power, and structure of the C

progranmm ng | anguage, while producing executable prograns whose
conpact size and fast speed of execution rivals that of progranms
witten in assenbly | anguage.

The Introl-C software package includes a C Conpiler, Relocating
Assenbl er, Linker, Loader, Library Manager, and Standard Library.

This Conpiler Reference Manual describes the operation, use, and
features of the C Conpiler and Rel ocating Assenbl er.

The operation and features of the Linker, Loader, and Library
Manager are described in the Linker Reference Mnual

The Standard Library Manual furnishes a detailed description of the
functions contained in the Standard Library.

Nowhere in any of these manuals do we profess to teach the C

progranmm ng | anguage. It is assuned the user has access to the
definitive text, "The C Programm ng Language", Kernighan & Ritchie
(Prentice-Hall), or one of the several available C |[|anguage

tutorials, for questions pertaining to the particulars of the C
| anguage itself. The set of Introl-C Users Manuals are intended only
to describe Introl's inplementation of the | anguage.

C1l1

C 1

2

GETTI NG STARTED

This section provides a brief overview O the general procedures for
using Introl-C and is intended to help the user get off to a "fast

start” in running the Conpiler and its related programs. For nore
detailed operating information the reader is referred to subsequent
sections in this nmanual, as well as the other related user nanuals
that nmay have been furnished with the Introl-C package. The

following coments assune that Introl-C has already been installed
on the wuser's system (Refer to the Installation Instructions
acconpanying the Introl-C distribution diskette for applicable
installation procedures.)

GENERAL

Introl-C is designed to enable the user to create an executable
output file froma C source file with a mnimmof effort. Normally
it is only necessary for the user to enter a conpilation/assenbly
conmand line, and then enter a |ink/load conmand |i ne.

In the sinplest case, and assunming the C source programresides in a
single file called "sieve.c", for exanple, all that is necessary is
to enter the conpiler conmand |ine:

icc sieve
and then enter the |inker conmand |ine:
ilink sieve

The conpiler conmand line entry wll initiate execution of the
Conpiler, which first conpiles the file "sieve.c" to produce an
internediate (and normally tenporary) assenbly |anguage file, and
t hen automatically «calls the Assenbl er, which assenbles the
Conpiler's assenbly |anguage output into a relocatable nodul e nanmed
"sieve.R' as the result. The linker command line, in turn, will cal

the Linker, causing it to first link the relocatable file "sieve.R"
with any referenced functions fromthe Standard Library, and then
automatically execute the Loader, which |loads the linked output into
an executable output file as the final result. The executabl e output
file will have the filenanme "sieve", possibly wth a filenane
ext ensi on appended, dependi ng upon which specific Introl Loader is
being used (refer to Loader Appendices in the Linker Reference

Manual for detail s). VWhen t he Loader fini shes, t hree
conpilation-related files wll typically exist: the original C
source file "sieve.c", the conmpiled and assenbl ed rel ocat abl e nodul e
"sieve.R', and the Ilinked and |oaded executable output file.

COWPI LER COMVAND LI NE

The conpiler conmmand |ine causes a C source file to be both conpiled
and assenbl ed to produce a relocatable nodule as the result.

The general form of the compiler conmand line is:

C21

icc <fil ename> {<option>)

where <filename> is the name of the C source file which is to be
conpiled and (<option>) represents zero or nore option specifiers
for controlling the conpilation and assenbly processes. The input
filenane is expected to have a filenane extension; if none is
specified, the Conpiler wll assune the source file nanme has the
extension ".c Unl ess the user explicitly assigns some other nane
to the output file, the relocatable file produced after the
Assenbl er pass finishes will default to having the sane nane as the
C source input file, except with the filenane extension ".R".

Conpiler-related as well as Assenbler-related options my be
specified on the conpiler comand |ine. Each of the available
options are described in detail in the Compiler Section of this

manual . Sone of these option specifiers, and their general function
are indicated bel ow

Conpi l er-specific option specifiers include:

-a[t]|d| b]s]=<loc>
Causes data of type "Text" or "Data" or "Bss" or "String"
respectively, to be placed under the | ocation counter indicated
by the <l oc> nunber.

- b=<directory>
Identifies <directory> as being the place to find current and
subsequent passes of the Conpiler.

-C
Overrides default condition wth respect to generation of
posi tion i ndependent code.

-d
Overrides default <condition wth respect to generation of
posi tion i ndependent data.

-g<C

Forces use of alternate "<c>" version pre-processor pass.
-i=<directory>

Identifies <directory> as a place to search for #include files.

-k
Causes console to display the nane of each conpilation pass as
it is being executed.

- mknanme>(=<stri ng>)

Defines <nane> in preprocessor, with value <string> optionally
assigned to <nane>.

Retains the intermedi ate assenbly | anguage output file produced
by the Conpiler.

C22

-S
Causes "nested comrents"” to be disall owed.

-t=<directory>
Pl aces tenporary files produced by this and subsequent passes
of the Conpiler in "directory" |ocation

-y[=<n>]
Strips all identifiers to a maxi mumlength of <n> characters.

Interprets "\n" (ie newine) characters as being carriage
returns.

Assenbl er - speci fic options include:

-o=<fil ename>
Assigns the name <filenanme> to Assenbler's output object file.

- gq=<cl ass>
Sets class specifier of Assenbler's output nodule to the
nuneric val ue indicated by <class>.
-U
Forces all undefined synmbols to default to inmported synbols.
-X
Prevents an object file from being produced.

LI NKER COMVAND LI NE

Unless the wuser explicitly opts to inhibit |oading, the |inker
conmand line will cause an input nodule to be both |inked and | oaded
to produce an executable output file as the end result.

The general formof the |linker command line is:
ilink <file> {<options>} <file> {<options>}
where each <file> entered represents the name of a file to be |inked

and {<options>} represents zero or nore option specifiers for
controlling the linking and |oading processes. Each input fileis

expected to have a filenane extension; if none is specified, the
Linker wll assune the input filename extension to be ".R'
Normal Iy, the name of the executable output file will be the sane as

the nodule which contains the "primary function nane", but with a
filenane extension determ ned by the particular Loader being used
(refer to the Linker Reference Manual for further discussion).

Each file that 1is input to the Linker is expected to be a

rel ocatabl e modul e. The Linker will NOT conpl ain about producing an
out put nodul e which contains unresolved references; however,
attenpts to subsequently | oad such a nbdule will not be successful

C23

Bot h Li nker and Loader options nay normally be specified on the link
conmmand |ine. These options are discussed in detail in the Linker
Ref erence Manual. Followi ng are sone of the link-time options that
are avail abl e:

-b
Do not search Standard Library, "libc.R".

-c=<file>
Find additional options and/or filenames in comand, file naned
<file>.

-d[<c>]

Use optional "<c>ld" Loader instead of the "standard" Loader

- e=<synbol >
Set entry point to <synbol >.

-f<string>
Find additional library nanmed "lib<string> R' in the standard
place for libraries.

-f=<string>
Find additional |Ilibrary named "<string> R' in the standard
place for libraries.

SI[s][x][u]l[=<file>]
Produce a linker listing with specified content.

- nF<synbol >
Set the primary function name to be <synbol >.

-n
Do not autommtically call Loader.

-o=<file>
Assign the nane <file> to Linker's output file.

- P <c>]
Pi pe Li nker's output to Loader (if appl i cabl e for host
operating systen).

-s

Strip output file of all non-entry defined synbol s.

-t =<cl asslist>
Li nk using <classlist> classes of nodule, if they are
avai |l abl e.

-W

nmake executable file no natter what! (ie even if unresolved
ref erences exist).

C24

FI LENAME CONVENTI ONS

In general, the full legal filenanmes of any files which are input
to, or output, by, the Conpiler, Assenbler, Linker, and Loader are
al ways of the form

<name><ext ensi on>

where <name> is the noninal "generic name" of the original source
file involved and <extension>is a filename extension, typically
consisting of a period (.) followed by one or nore trailing
characters. Wen an input file is being specified on a command |i ne,
however, it is normally sufficient to specify just the <nane>
portion of the filename; the Introl-C program being called, whether
it be the Conpiler, the Assenbler, the Linker, or the Loader, wll
automatically select the naned file having an appropriate extension
(if such file exists) as described bel ow.

VWereas the generic nane associated with a given file serves to
generally identify that file as being derived from or related to
sone C source programor function, the filename extension indicates
the specific nature of the contents of that particular file; ie
whether it is a file that contains the C source text itself, or a
file that contains the assenbly |anguage version of the source
program or a file that contains a rel ocatabl e nodule version, or a
file that contai ns executabl e output, and so on

Because of this convention of using a filenane extension to identify
the specific nature of a file's contents, the Conpiler, the

Assenbl er, t he Linker, and the Loader are all designed to
automatically append a filenane extension to the output files they
produce. In each case the "generic nane" of the output file that

each of these conponent Introl-C prograns produces usually remains
the same as that of the input file, but the extension appended to
the output is unique to the particular Introl-C conpilation program
that generated the file. For exanple the Conpiler normally appends
an extension of the form".Mxx>" to the assenbly | anguage files it
produces, where the <xx> represents a 2-digit nunmber as described
later in this section; the Assenbler appends the extension ".R' to
the relocatable output files it produces; and the Linker appends the
extension ".RL" to the Ilinked (but unloaded) relocatable output
files it produces. 1In the case of the Loader, the specific filenane
extension (if any) appended to the output is determ ned by which of
the several Introl Loaders is being used to generate the executable
out put file.

Simlarly, the Conpiler, the Assenbler, the Linker, and the Loader
each expect their respective inputs to normally have a specific
filenane extension (ie usually the extension that is appropriate to
the "type" of file format each of these prograns expects to

process). In the case of the Conpiler, input files are expected to
have the filename extension ".c", which is the extension normally
associated wth files containing C source text. Input files to the

Assenbler are normally expected to have an extension of the form

C25

"OMRXXS" (where <xx> represents a 2-digit nunber assigned by the
Conpiler), which is the extension nornally appended to assenbly
| anguage files that have been produced by the included conpiler. The
Li nker expects its inputs to have the extension ".R', which is the
extension the Assenbler typically appends to the rel ocatabl e nodul es
it produces. The Loader expects its input files to have the
extension ".RL", which is the extension the Linker nornally appends
to the relocatable and linked output files it produces.

Thus, wunless sone other filenane extensions are explicity defined
for use on a command line, Introl-C wll default to using input
files, and producing output files, having filename extensions as
fol |l ows:

Introl-C Default Filename Extension
Progr am Input Files Qutput File
Conpi | er ".c" " Mexx>"
Assenbl er "L MRxx>" ".R

Li nker ".R " RL"
Loader "LRLY (varies with

Loader type)

*Note: The "xx>" designator in the ".Mxx>" extension represents a
2-digit nunmber unique to the specific Introl-C conpil er package that
is being used. For those Introl-C compiler packages that target the

6809 processor, the specific default extension is ".M9"; for
versions that target the 6801 and simlar processors, the extension
is ".M1"; for versions that target the 6805, the extension is

".M)5"; for versions that target the 68000, the extension is ".M8";
for wversions that target the NS16000, the extension is "M6"; for
versions that target the 8086, the extension is ".M6"

Al so, as indicated in the above table, the output filename extension
that is assigned to the executable output file wll be dependent
upon which of the several available Introl Loaders is being used.
The reader is referred to the Loader Appendices of the Linker
Ref erence Manual for further infornmation pertaining to Loader output
fil enanes.

ASSEMBLER COMVAND LI NE

Normally the Assenbler is invoked by the Conpiler automatically as
part of any conpilation/assenbly process. However, the Assenbl er nay
al so be called independently by the user for assenbling user-witten
assenbl y | anguage prograrns.

The general form of the assenbler command line is:

r<xx> <fil enanme> {<option>}

C26

where "r<xx>" represents the Introl filenane of the applicable
Assenbler furnished with the Introl-C package, <filename> is the
nane of the assenbly |anguage file which is to be assenbled, and
{<option>) represents zero or nore assenbler option specifiers.

The "<xx>" in the "r<xx>" filename of the Assenbler is a 2-digit
nunber wunique to the specific Introl-C package being used. The
Introl-C package that targets the 6809 processor has the specific
Assenmbler filename "r®"; the version that targets the 6801 and
simlar processors has the Assenbler filenanme "r0l"; the version
that targets the 6805 has the Assenbler.filenanme "r05"; the version
that targets the 68000 has the Assenbler filenanme "r68"; the version
that targets the NS16000 has the Assenmbler filename "rl6"; the
version that targets the 8086 has the Assenbler filenanme "r86"

The assenbly language input file is expected to have a filenane
extension; if none is explicitly specified, the input filenane
extension wll default to the ".Mxx>" extension that the included
Conpiler normally appends to its own output files. (ie ".M?9",
".M)5", etc, as applicable). The relocatable output file created by
the Assenbler will nonminally have the same nane as the input file,
but with the filenane extension ".R".

LOADER COMVAND LI NE

Normally the Loader is <called automatically by the Linker as a
result of a linker command line call. However, the Loader nmay al so
be executed independently by the user via a |oader conmmand |ine of
t he general form

<c>ld <fil ename> {<option>}

where the <c> represents the first letter of the Introl filenane of
the Loader which is to be called (several types of conpatible
Loaders are optionally available and potentially usable with
Introl-C, <filenane> is the filename of the relocatable file which
is to be Iloaded, and (option) represents zero or nore option
speci fiers. The relocatable input nmodule is normally expected to
contain no unresolved references. The input file is expected to have
a filenane extension; if none is explicitly specified, a ".RL"
filenane extension is assumed. The wuser is referred to the Loader
Appendi ces of the Linker Reference Manual to determ ne the "<c>ld"
nane(s) of the specific Loader(s) that may be legally accessed, the
applicable options available for each such Loader, and the unique
filenane extension (if any) assigned to the executable output file
produced by each Loader type.

C217

C 2.

8

THEORY OF OPERATI ON

The creation of an executable file from a C source file can be
considered to occur in four distinct phases: a conpilation phase,
foll owed by an assenbly phase, followed by a |inking phase, followed
by a |oading phase. Under Introl-C, however, the assenbly phase is

al ways initiated automatically when t he conpi |l ati on phase
term nates, and the |I|oading phase is initiated automatically when
the 1linking phase terminates. Thus, it will normally appear to the

Introl-C wuser as though only two phases are actually involved: a
conpi l ati on/ assenbly phase (which is initiated via a single conpiler
conmmand line call), and a linking/loading phase (which is initiated
via a single linker command line call).

COWPI LATI ON PHASE

The conpilation phase, per se, is performed by the Conpiler and
translates a C source text file into an assenbly |anguage text file
which is suitable for input to the Assenbler.

The Conpiler converts a C source file into assenbly |anguage by
segentially executing four separate conpilation prograns, or
"passes", which are called passes "cO', "cl", "c2", and "c3"
respectively. (Note: The "cO' pass is alternatively called the "icc"
pass for sone operating systemversions of Introl-C.) Each of these
passes perforns a unique function in the overall conpilation process
and, as each pass finishes, it automatically initiates the next pass
in the sequence.

The basi c function of the c¢O0 pass, al so known as t he
"preprocessor", is to preprocess the C input text, renoving
conmments and other white space fromthe C source text and executing
any preprocessor directives, ultimately transfornming the original C
input into a series of tokens that can be nore easily nanipul at ed
and analyzed. |If illegal characters appear in the C source text, or
preprocessor directives have been used inproperly, the cO pass wll

detect these and flag themas errors. The cl pass, also called the
"parser", converts the output of the cO pass into two resultant
files: atriple file, which is a tree representai on of the origina

program and a synbol file. The cl pass al so checks the program for
semantical and grammatical accuracy and is responsible for detecting
and reporting any errors of this type. The function of the c2 pass,
also called the "optimzer", is to optimze the triple file
generated by cl to reduce the size and increase the execution speed
of the final program The c3 pass, called the "code generator", uses
the optinmzed triple file produced by c2, together with the synbol

table produced by cl, to produce an assenbly |anguage output file
for the target processor. The several Conpiler passes transfer
i nformati on between one another via tenmporary files, which are
normal ly automatically deleted once their contents are no |onger
needed by the Conpiler.

The final result of the 4-pass conpilation phase, therefore, is the
creation of an assenbly | anguage text file which is suitable input

C3.1

for the Introl Assenbler. Just before the |ast Compiler pass (c3)
termnates, it automatically calls the Assenbler.

ASSEMBLY PHASE

The function of the assenbly phase is to translate the assenbly
| anguage text file that is produced by the c¢3 pass of the Conpiler
into a relocatable object file which is suitable input for the
Linker (or, if nolinking is required, for possible input directly
to the Loader). The assenbly phase, performed by the Assenbler
program is initiated automatically when the ¢3 Conpiler pass
fini shes.

During the assenbly phase, the Assenbler converts the assenbly
| anguage fil e produced by the conpilation phase into a "rel ocatabl e"
out put file that contains a single relocatable nodule. The
Assenbler's output is "relocatable" from the standpoint that al
address references nade wthin the nodule are independent of the
nmodul e's final absolute address location in nermory. It is the
function of the Loader to determ ne the final |ocation of the nodule
in menory and, thus, the absolute |ocation of addresses. Therefore,
until the Assenbler's output nodule has been processed by the
Loader, the out put nmodul e gener at ed by the Assenbler is
"rel ocat abl e" because the actual position of the nodule in nenmory is
still subject to change.

Al though the Assenbler is capable of generating error nessages, it
should remain silent if the input file is the result of a
conpilation since the Conpiler itself should in no case produce a
syntactically incorrect assenbly | anguage file.

Wien the Conpiler calls the Assenbler, it normally specifies an
option to the Assenbler which causes the Conpiler's assenbly
| anguage output file to be deleted after the Assenbl er has fini shed
using it. Thus, only the relocatable object file generated by the
Assenbler normally remains as the final result for the typica
conpi |l ati on/ assenbly process.

LI NKI NG PHASE

The function of the Linker is to resol ve external references in a

rel ocatabl e nodul e. It does this by joining the nodule to other
rel ocat abl e nodul es whi ch sati sfy those external references. The
result of the linking process is always a single resultant
rel ocatable nodule which, if all external references have been
satisfied, is suitable input for the Loader. Since the Linker

normally calls the Loader automatically, it usually appears as if
the Linker both Iinks and | oads the input to produce an executable
file as the end result.

Whenever a program nodul e references a | abel which is not defined in
that same nmodule, it is said to have an "external reference". Al

such external references nust be "resol ved" before the nodul e can be
| oaded to produce an executable nodule. Although it is possible to

C3.2

create a program nodule that makes no external references, it is
nore common that a nmodule will reference many | abels which are not
defined in its text; thisis certainly the case wth nodules
produced as a result of conpiling and assenbling a C source file.
The Linker "resolves" such external references by first |ocating
ot her nodul es which define the unresolved |abels, and then |inking
these nodules with the original nmodule to produce a |larger single
rel ocatable nodule that includes the necessary |abel definitions.
The Linker attenpts to resolve as nmany external references as it
possibly can, terminating when it either has resolved all the
external references that are made or, alternatively, when it runs

out of places to look for definitions which wll satisfy any
remai ni ng unresol ved references. Wen the Linker determines it has
resolved all the references it possibly can, it wll normally
automatically call the Loader. The Linker will not conplain if sone
unresolved references still exist in its |inked output; however,
attenpts to | oad such nodules will not be successful

Inputs to the Linker must be relocatable npdules, such as those
produced by the Assenbler, or as produced by the Linker itself (ie
nodul es previously produced by executing the Linker alone, with the
Loader pass inhibited). Normally the Standard Library is always
searched by the Linker in its attenpt to resolve necessary
ref erences.

LOADI NG PHASE

During the |oading phase, the Loader fixes absol utes addresses for
relocated values within a relocatable npdule, thereby converting a
rel ocatable nopdule into an "executable" output file. The exact
format of the "executable" output file that is produced during the
| oadi ng phase is determ ned by which of several optionally avail able
Introl Loaders is being used. Depending on Loader type used, the
output file may be executable under the host operating systems or
execut abl e under sone other target operating system or it may be a
file of load records in one of several hex formats. (See the Loader
Appendi ces of the Linker Reference Manual for further information.)

Normal Iy, unless optionally overridden by the user, the 'standard

Loader included in the Introl-C package is automatically called by
the Linker when the Linker termn nates. For resident Introl-C
conpilers, the "standard" Loader is one which produces an output
that is executable on the host system For Introl-C Cross-Conpiler
packages, the "standard" Loader is one that produces an output file
of hex | oad records.

The Loader expects its input to be a single rel ocatable nodul e which
has no unresolved external references. Nornmally (unless optionally
overridden by the user) the Loader will conplain about unresol ved
external references inits input and | oading of such nodules wll
not be successf ul

C.3.3

C 3.4

COWPI LER

The function of the Conpiler is to translate a C source file into an
assenbly |anguage text file which is suitable input for the Intro

Assenbl er. In normal operation the Conpiler always calls the
Assenbl er when the it finishes. Therefore, invoking the Compiler
wil | typically result in a fully conpiled, fully assenbl ed

rel ocat abl e out put nodul e bei ng produced.

The result of a successful conpilation wll be the creation of a
rel ocatabl e object nodule which will have the sane file nane as the
original C source input file, but with the filenane extension ".R'

An intermedi ate assenbly | anguage file is produced by the Compiler

which is wused as the input to the Assenbler. However, this
i nternedi at e assenbly language file is nornmally autonmatically
del et ed when the Assenbler finishes using it. |If the user w shes to

retain the Conpiler's assenbly |anguage output, a Conpiler option
for doing so (the "-r" option) is provided. Wen the "-r" option is
specified, the assenbly |anguage output will be saved in a file
havi ng the sane nane as the C source input file, but with a filenane
extension of the form ".Mxx>", where <xx> represents a 2-digit
nunber as descri bed bel ow

COWPI LER COMVAND LI NE

A conplete 4-pass conpilation and assenbly is initiated using a
conpil er comand |ine of the follow ng form

icc <filenane> {<option>}

where <filename> is the nane of the C source file which is to be
conpiled and {<option>} is zero or nmore Conpiler and/or Assenbler
option specifiers. (Remenber the Compiler automatically calls the
Assenmbler when it finishes.) If no filename extension is specified

for the input file, the filenane extension ".c" is assuned.
The result of a successful conpilation and assenbly will be a
rel ocatable object nodule, normally having the same fil enanme as the
input file, but with the filenane extension ".R' (assigned by the

Assenbl er). The "-r" option rmust be specified (see Conpiler Options,
below) if the user w shes the Conpiler's assenbly |anguage out put
file to be retained; this assenbly Ilanguage file wll otherw se
automatically be del eted when the Assenbler finishes using it. The
Conpiler's assenbly |anguage output file, if saved, wll have
the same filenanme as the original input file, but with a filenane
extension of the form".Mxx>", where the <xx> represents a 2-digit
nunber. For Introl-C Conpilers that target the 6809 processor, this
extension wll be ".M9"; for Conpilers that target the 6801 and
simlar processors, the extension will be ".M1"; for 6805 targets,
".M)5"; for 68000 targets,".M8"; for NS16000 targets, ".ML6"; for
8086 targets, ".M6".

It should be noted that the Conpiler pre-pends an underscore ("_"
at the beginning of each synbol it generates. Thus, although a

C4.1

keyword such as "main", for exanple, is not preceded by any
underscore at the C programmng level, it will have a pre-pended
underscore whenever it appears in any output files generated by the
Conpil er. Accordingly, the Assenbl er and Li nker expect all C synbols
in their inputs to begin with an underscore. Because of this, when
the wuser is witing assenbly | anguage prograns for direct input to
the Assenbler, or explicitly defining a "program nam ng function"
symbol or an "entry point" synbol at link time, any C |anguage
synmbols or C functions that are wused nust sinilarly always begin
with a |eading underscore character (even though these synbols or
functions, at the C programlevel, do not have a | eadi ng underscore
in their names).

COVPI LER COMVAND LI NE OPTI ONS
As indicated above, option specifiers for altering the operation of
the Conmpiler, and also the Assenbler, nay be specified on the

conpiler command |ine. Any such option specifiers should al ways
appear after the input file naned on the comand |ine. Option
specifiers are indicated by a dash, "-", followed by an al phabetic

character, perhaps followed by an equals sign and paraneter. The
al phabetic character indicates which option is desired and the
paranmeter is dependent on the option. Option specifiers which are
not pertinent to the Conpiler itself are automatically passed on to
the Assenbler when it is subsequently <called by the Conpiler. The
various options available for use are described below grouped
according to whether they apply specifically to the Conpiler, per
se, or whether they apply specifically to the Assenbler pass.

Conpi | er-specific options include:

-a[t]|d| b]s] =<l oc>
where [t]|d|b|ls] indicates a single letter ("t" or "d" or"b" or
"s" and <l oc> is an unsigned number between 0 and 15. This
option will force the Conpiler to place generated output of a
speci fied type under any one of 16 avail able |ocation counters,
whi ch counters are nunbered from zero through 15. Data type is
specified by the letter entry; "t" for text; "d" for data; "b"

for bss; and "s" for strings. The <loc> entry specifies the
| ocation counter number. Thus the option specification "-ad=5"
wil | cause all initialized data to be placed under |ocation

counter 5 (rather than its default counter of 1). The default
| ocation counter for code (text) is zero (0); the default for
dat a is location counter one (1); the default for strings is
| ocati on counter two (2); and the default for uninitialized
data (bss) is location counter three (3).

-b=<di rectory>
This option is used to specify that <directory> is the place in
whi ch this, and subsequent passes, can expect to find
subsequent passes of the Conpiler. This directive nmay be
appl i ed to any pass of the Conpiler and is in force during
subsequent passes.

C4.2

-g<c>

This option changes the Conpiler's default condition with
respect to the "position dependency" of generated code, as
foll ows. If Introl-Cis being run on a host operating system
which does not pernit position dependent code to be executed,
the compiler will default to generati ng only position
i ndependent code. |In such case, this option will override this
default condition and force the Conpiler to instead generate
position dependent code. If Introl-Cis instead being run on a
host operating systemthat does permt position dependent code
to be executed, the Compiler wll default to generating
position dependent code. In such case, this option wll
override this default condition and force the Conpiler to
i nst ead generate position i ndependent code. Position
i ndependent code is code in which no absolute references are
permtted; all junps are relative to the programcounter and
thus are not dependent on the final location of the code in
menory. This option is useful primarily for users who wish to
generate code for a target nachine other than the host. This
option is used only by the c¢3 (code generating) pass of the
Conpiler; it may, however, be specified in the initial call to
the first pass of the Conpiler.

This option changes the Conpiler's default condition with
respect to the "position dependency" of generated data, as
fol | ows. If Introl-Cis being used on a host operating system
that does not permit programs w th position dependent data to
be executed, the Conpiler will default to generating only
position independent data. In such case, this option overrides
this default condition and forces the Conpiler to instead
generate position dependent data. |If Introl-Cis instead being
run on a host operating system which does permt programs with
position dependent data to be executed, the Conpiler wll
default to generating position dependent data. |In such case,
this option overrides this default condition and forces the
Conpiler to instead generate only position independent data.
Position independent data is data that nust be referenced
through a register. The actual position of position independent
data is not known until the necessary registers are set, just
prior to execution of the main program This option is usefu

primarily for users who wish to generate code for a target
machi ne other than the host. Although this option is used only
by the c3 (code generating) pass of the Compiler, it may be
specified in the initial call to the first pass.

This option specifies that an optional parser pass, nhamed
"cl <c>", be used (if such optional "cl<c>" pass exists) for the
conpilation process in lieu of the "standard" cl parsing pass.
Dependi ng upon the specific host operating systemfor which it
has been supplied, sone versions of the Introl-C Conpiler nmay
i nclude the "standard" cl pass program as well as one or nore
optional"” wvariations of the «cl pass. The "standard" cl pass

C 4.3

supports all features of the C language described in the
"Definition O Introl-C" section of this nanual. The "optional"
parser(s) provided, if any, typically omt support for one or
nore features of the Clanguage and are wusually intended to
permt the user to circunvent nmenory linitations that m ght
otherwi se prevent conpilation of |arge prograns under certain

host operating systens. If any optional parsers have been
supplied for use for your particular host configuration, such
parsers will be described in the Appendices of this nmanual. The

option, of course, should only be specified if optiona
"cl <c>" parser prograns have, in fact, been furnished with your
Conpi | er.

-i=<directory>

This option specifies that <directory> is the place to search
for files specified via a #include preprocessor directive if
the specified file cannot be found in the default |ocations.
This option may be specified up to 9 tinmes so that wup to 9
different places my be searched when the preprocessor is
|l ooking for an include file. |If the Conpiler passes are being
run individually, this option is legal only for the cO pass.

Thi s option causes the nanme of each conpilation pass (including
the assenbly pass) to be displayed on the console as that pass
is being executed. This is wuseful for permtting the user to
noni tor the progress of a conpilation sequence when Introl-Cis
being run under a relatively "slow' host operating system

- mkname>{ =<st ri ng>}

Thi s option has the effect of permitting a #define
preprocessor directive to be specified on the command |ine.
The -moption "defines" the identifier given by <nane> to the
preprocessor and assigns the value given by the optiona
<string>to this identifier

This option prevents the next conpilation pass from being
| oaded when the current pass t er m nat es.

This option specifies that the assenbly | anguage source file
produced by the Conpiler (which will have a fil enanme extension
of the form ".Mxx>") should be retained. This assenbly
| anguage file output by the Conpiler is otherwi se automatically
del et ed when the Assenbl er has finished using it.

This option instructs the Conpiler to disallow nested conments.
That is, a slash-star conbination appearing wthin a comment
will not be interpreted as the start of a nested comrent when
this option is specified. This option should not be confused
with the "-s=<size>" option described bel ow, which is intended
to provide a completely different effect.

C4.4

-s=<si ze>

VWien the c2 (optimzer) pass of the Conpiler is being executed
separately, this option may be used to set the nmaxi mum size of
the triple buffer. The buffer size will be set to the val ue
i ndi cated by <size> which nust be an integer nunber. Normally
the size of the triple buffer is not of concern to the
programmer and is otherwi se automatically set by the cl pass to
produce an efficient buffer size. The "-s=<size>" option should
be used only when the c2 pass is being i ndependently executed;
if used under any other condition, the Conpiler will otherw se
interpret it as being the "-s" option,, described previously,
whi ch di sall ows nesting of comrents.

-t=<directory>

This option specifies that <directory>is the place in which
this and subsequent passes of the Compiler are to place and
find their tenmporary files.

- Y[=<n>]

The

This option forces the Conpiler to strip all of its identifiers
to a maxi mumlength of <n> characters, where <n> is a positive
integer less than or equal to 90. |If this option is not used,
the Conpiler will default to permitting identifiers to be up to
90 characters long. The "=<n>" entry is optional and, if not
used, wll cause the maxinumlength to be autonatically set at
8 characters (ie the specification "-y" will strip all
identifiers to a maximumlength of 8 characters, just as would
occur for the specification "-y=8").

This option causes all "\n" (newine) character constants to be
interpreted as being carriage returns. This option is included
because the definition of the "\n" character is anbigious on
some operating systems. A "\n" is defined by the C |anguage to
represent both a newine and a |inefeed. This works only if the
operating systemin use defines its newine character to be a
linefeed. Unfortunately sone operating systens use the carriage
return to indicate a newmine. Thus, fromthe Conpiler's point
of view, it is not always clear whether a linefeed or a newine
is intended by the user when a \n character is encountered.
This option is provided primarily for those users having
trouble with the distinction when transporting source code from
one type of systemto another

foll owi ng Assenbl er-specific options may be specified on the

conpi |l er comand | i ne:

-o=<fil ename>

This option allows the user to explicitly nane the Assenbler's
output file, assigning the nane indicated by <filename> to this

output file. For exanple, the specification "-o=file" would
assign the nanme "file.R' to the rel ocatabl e nodul e produced by
the Assenbler. |If the -o option is not specified, the object

C 4.5

file is given the sanme nanme as the input file, except with the
filenane extension ".R'. Unless the <filenane> explicitly
defines sone other filenane extension, the extension ".R" will
automatically be appended by the Assenbl er.

- gq=<cl ass>

This option is used to assign a nuneric class specifier to the
rel ocat abl e nmodul e produced by the conpiler. The class
specifier assigned is determined by the <class> entry, which
can be any nunber from zero through 255. |If this option is not
specified, the relocatable output nodule produced by the
Assenbler wll be assigned the default class nunber of zero
("0"). A nodule's class nunber becones significant when
mul tiple nodules exist which have identical "filenames"; in

such instances, use of a different class nunber for each such
nodule permits any given nodule to be uniquely identifiable.

This option forces all undefined synbols to default to inported
synbols. When this option is not specified, any synmbol which is
not inported and also not defined within the file will generate
an error message.

This option prevents an object file from being produced.

C 4.6

COWPI LER ERROR MESSAGES

Conpiler error nessages typically occur because of one of three
basic types of "errors" being encountered during conpil ation. The
nost common cause of an error nmessage is that a syntax error of some
type has been detected in the C source input file. A second type of
error is when the Conpiler cannot, for some reason, performits
conpilation; for exanple, if the disk becones full while the
Conpiler is attenpting to wite out one of its many tenporary files.
The third type of error is one in which the Conpiler fails to
operate due to an internal bug. This last type of error should, of
course, never occur but a realist should not be totally unprepared
for such a possibility.

Program error nessages have the form
file: <nane> error at |ine <line> <nessage>

where <name> is the name of the file involved, <line>is the |line
nunber in that file at which an error becane apparent to the
Conpiler, and <nessage> is a note fromthe Conpiler which indicates
what the Conpiler found unacceptable. Noti ce that the |ine nunber
given is the line in which a syntax error of sone type first becane
evident to the Compiler. This may or may not be the actual line in
the file where the programfirst began deviating from what the
programmer may have had in mnd when he was witing it. There is
really no way for the Conmpiler to guess what the "real"” error in a
program may be; the Compiler can only conplain at the point where
t he programtext subsequently becomes syntactically incorrect. This
may be many lines after the I|ine which contains the actua
progranming error. Simlarly, the nessage which the Conpiler prints
out indicates what the Conpiler sees the problemto be; this may or
may not be the problemas the progranmrer sees it.

The following are sone explanations of the |ess obvious error
nessages produced by the Conpiler.

"while' expected
The Compiler expected a "while" to follow a "do" but instead
found sonet hing el se.

arithmetic type required
The Compiler expected an expression which evaluated to an
arithmetic type, but instead found something else such as a
structure or union.

bad &
The anpersand operator was used on sonething which was not an
[val ue.

bad break

A break was encountered which was not in either a "do"
"while", or "for" loop, or in a "switch" statenent.

C4.7

bad case
A case | abel statenent was encountered which was either outside
of a switch statenent or was al ready defi ned.

bad cast
The Conpiler couldn't force the desired cast. This happens when
one attenpts to cast an integer as a structure, for exanple.

bad conti nue
A continue statenment was encountered which was not in either a
"for", "do", or "while" |oop

bad defaul t
A default was encountered outside of a switch statenent or el se
nore than one default was specified for a given swtch
st at enent .

cannot create output file
The Compiler was unable to create the output file. This is
usual | y because the disk is full

cannot open #include file
The Compiler was unable to open the specified #include file.
This is often because the user does not have pernission to read
the file.

conpi | er bug
You shoul d never see this error. It indicates an internal error
in the second pass of the conpiler.

decl aration of paranmeter not in parameter |ist
Indicates that a variable was declared in a function header
whi ch was not part of the paraneter list for that function.

expression stack overflow, aborting
The Conpiler's i nternal stack (on which it evaluates
expressions) has overflowed. This can be renedi ed by breaking
up the offending expression into smaller expressions which can
be eval uated separately.

function required
This indicates that sone expression which is not of type
function is being used where a function is required.

illegal #else
An #el se was encountered outside of an #i fdef or #ifndef block

illegal #undef
This wusually neans that there was no identifier follow ng the
#undef keyword.

illegal array reference

An attenpt was nmade to reference an array in an illega
fashi on.

C 4.8

illegal character
An illegal character was encountered in the input file. This is
usually due to a preprocessor directive which does not begin
in colum 1 but may al so be caused by a mi ssing open quote or
open coment. Most control characters are considered illegal

illegal return type
The return type of a function was not of sinple type. No
structures or unions my be returned as function values
(al though pointers to them nmay be returned).

| abel used but not defined in function
A label was used on a goto but was never defined. Labels are
always local to the function in which they are defined.

| val ue required
This means that the Conpil er expected an expression which could
be wused to represent a changeable value but did not find one.
An lvalue is a value which represents a changeabl e value. For
exanple if the variable XX is defined as an integer then it may
be used (al nost) anywhere an integer constant can be used. But
it may also be used in places where it is illegal to use a
constant, like on the left hand side of an assignnment operator
Thus XX is an |val ue whereas a constant is not.

mssing "'" or character constant too |ong
This indicates that nore than one character was found in a
gquote constant. Either the termnating """ is missing or there
is nmore than one character between the starting "'" and the
termnating "'". Cnntrol characters which begin with a
backsl ash are considered to be a single character

nm ssi ng nmenber nane
A reference to a nenber name was nade whi ch was not declared to
be a nenber of the original structure.

nmul ti ple synbol definition
Indicates that the synmbol following the dash has been defined
nore than once.

no matching #if for #endif
An #endi f was encountered but no #ifdef or #ifndef preceded it.

poi nter type required
This indicates that an operation was attenpted on an expression
whi ch should be (but is not) of pointer type.

preprocessor bug #l
You should never see this one. It indicates that there is an
internal error in the first pass of the conpiler.

string inproperly term nated: unexpected ECF
This usually means a m ssing close quote.

C4.9

string too long, truncated at right
This indicates that a string exceeded the nmaxinmumstring
constant length (the current limt is 256 characters, including
the term nati ng NULL).

struct/union tag used but not defined in block
A structure or union tag was used but not defined in the
current programfile, function, or block

structure/union size unknown
This message is generated when the size of a structure or union
is required (as in the sizeof operator) but is not known
because the struct or wunion definition has not yet been
encount er ed.

too many #define paraneters
Too many paraneters in a #define directive. The current |imt
is approxi mately 25.

too many nested #ifs

Too many nested #ifdef or #ifndef directives. Thi s incl udes
those due to #include files. The current |limt is approxinmtely
15.

unbal anced conment
This indicates that the End O File was encountered before a
comment was conpl et ed. Renmenber: Introl-C allows nesting of
comments. Each /* nust have its own */ to termnate it.

undecl ared identifier, assumng auto int
An identifier was encountered which has not been defined. The
Conpiler wll assume it was declared as an automatic integer
Notice that this assunption may cause the Compiler to generate
additional error nmessages if the identifier is wused in a
fashion which is not permtted for an auto int.

unexpect ed end of file, unbal anced #if, #ifdef, or #ifndef
The End OF File was encountered before an #ifdef or #ifndef was
conpl eted by an #endif directive.

unexpected end of file
The End of File was encountered while the Compiler was stil
trying to conplete some construct. For exanple, if the Compiler
has not yet encountered the <closing brace of a function
definition and encounters the EOF, it will print this nessage.

unmat ched paren or quote in macro call ... end of file
The End O File was encountered while the Conpiler was
searching for an expected close quote or a right paren

unr ecogni zabl e preprocessor directive

This indicates that a # in colum 1 was followed by an unknown
directive. Check the spelling of the directive.

C. 4.10

war ni

war ni

war ni

ng - undefined operator on pointer type
This indicates that an operation was attenpted involving a
poi nter which is not permitted on operands of type pointer

ng - expression with no effect, ignored

This indicates that the ConDiler has found an expression wth
no effect. That is, no variable is updated as a result of the
expression. No code is generated for the expression.

ng - union or struct as function paraneter, '& added
This indicates that an attenpt was nade to pass an expression
of type struct or union as a function paraneter. Currently this

is disallowed by the Conpiler. The Conpiler wll insert an
anpersand so that a pointer to the structure wll be passed
i nst ead.

C4.11

C 4.12

ASSEMBLER

The Assenbler furnished with Introl-C is a relocating assenbler
designed to translate an assenbly | anguage text file, as produced by
the Introl Conpiler, into a relocatable object file. This object
file may then be linked, if need be, to other relocatabl e object
files and | oaded to produce a file which is in executable fornat.

In normal usage, the Conpiler always automatically <calls the
Assenbl er when the Conpiler, per se, finishes. The Assenbler, in
turn, then assenbles the output generated by the Conpiler to produce
a relocatable object nodule as the final result of a conpilation

The relocatable nodule that is produced by the Assenbler will
typically have the sane filenane as the original input, file, but
with the filenanme extension ".R' appended.

When the Conpiler autonatically calls the Assenbler, the Compiler
passes 3 Assenbler option specifiers to the Assenbler; specifically,
the "-n", the "-s", and the "-z" Assenbler options are passed. The
"-n and -s" option specifiers prevent the Assenbler from
generating any type of assenbly output |isting and synbol table
listing, respectively; the "-z" specifier causes the Assenbler to
delete its assenbly language input file (ie the Conpiler's output
file) when it has finished using it. Al t hough the effect of the
Conpi l er-supplied "-z" specifier to the Assenbl er can be overridden
via a conpiler command line option (ie with the '-r" Compiler
option, which forces the Conpiler's output file to be retained),
there is no provision made to simlarly override the automatically

supplied "-n" and "-s" Assenbler options. Al this neans is that the
Assenbler's output listing and synbol table listing wll never be
available as the result of a "conventional" conpilation/assenbly
sequence. The Assenbler's output |Ilisting and synbol table are

readily available to the user, however, although a 2-step process is
i nvol ved: (1) first, compiling/assenbling the programwth the "-r
specified on the conpiler command Iine to "save" the ".Mxx>"
assenbly language file produced by the Conpiler, and (2) then
i nvoking the Assenbler independently to separately assenble this

".Mxx>" file, thereby generating the desired output |Ilisting and
synmbol table as a result. As noted in the Compiler section of this
manual, all synbols appearing in any output generated by the
Conpiler will will be pre-pended with an underscore character, which

is automatically added to all synbols by the Conpiler.

As inferred by the preceeding conments, although the Assenbler is

nomnally supplied for wuse by the Conpiler proper, it 1is also
possible for the wuser to independently <call the Assenbler for
assenbling assenbly |anguage progranms directly - either assenbly

| anguage files which have been previously produced by the Conpiler,
or assenbly |l anguage prograns that nay have been witten by the
user. The ability to independently use the Assenbler in this way is
very useful, for exanple, when the user wshes to include an
assenbly |anguage routine as a part of a larger overall C program
or to produce a separate assenbly |anguage program The remai nder of
this Assenbler Section is concerned with wusing the Assenbler

C5.1

i ndependent of the conpiler for these types of purposes.

ASSEMBLER COMVAND LI NE

The Assenbler may be called i ndependently by entering a |line of the
form

r<xx> <file> {<options>}

wher e r<xx> represents the Introl filename of the Relocating
Assenbler, <file> is the name of the assenbly | anguage source file,
and {<options>) represents zero or nore Assenbler option specifiers.
The Assenbler's assenbly |anguage input file is expected to have a

filenane extension; if none is explicitly specified, a filenane
extension of the form".Mxx>" is assuned. The output file produced
by the Assenbler will be a relocatable nodule, nornally having the

sanme nanme as the input file, but with the filenane extension ".R'

The "X x>" as used in both the "r<xx>" and the ". Mxx>"
desi gnations nentioned above, represents a 2-digit nunber unique to
the particular Introl-C conpiler package being used. For those
Introl -C packages that target the 6809 processor, the "<xx>"
represents the digits "09"; for versions that target the 6801 and
simlar processors, "<xx>" represents the digits "01"; for versions
targeting the 6805, "<xx>" represents "05"; for versions that target
the 68000, "<xx>" represents the digits "68"; for versions that
target the NS16000, "<xx>" represents "16"; for versions that target
t he 8086, "<xx>" represents "86". Therefore, if the Introl-C package
happens to target the 6809, for exanple, the appropriate filenane
for the Relocating Assenbler would be "r09", and the default
extension assuned for the Assenblerls'input files would be ".M9"

ASSEMBLER OPTI ONS

Assenbl er options are |isted and described bel ow Sone of these
options nmay be legally specified on the conpiler call |ine when the
Assenbler is being called autonmatically as the result of a
conpilation. However, nmpost of the Assenbler options are legal, or
will have nmeaning, only when the Assenbler 1is being call ed
i ndependently by the user

-a
The "-a" option forces all synbols except those that begin with
a question mark, "?", to be placed in the object file. Usually
only the externals and undefined synmbols are included in the
object file. This Assenbler option may not be legally used on a
conpiler command line since it conflicts wth the already
existing (and totally different) "-a" option provided for the
Conpi | er proper.

-C

This option causes the output |listing produced by the Assenbl er
to be sent to the console. This Assenbler option nay not be
legally used on a conpiler conmand line since it conflicts with

C5.2

a preexisting (and totally different) "-c Conpi | er option

This option forces listing of all included files. Normally,
included files are not part of the output listing. This option
may not be legally used on a conpiler command I|ine since it

conflicts with a preexisting (and totally different) "-

Conpi | er option.

This option forces all synbols which begin with a question
mark, "?", to be listed in the synbol table. Unless this option
is wused, synbols which begin with a question mark are not
listed as part of the synbol table listing. The Introl-C
Conpil er uses such labels as targets of short junps. They are
not normally listed because they are not generally of interest

to the programer. This option will have no effect if used on a
conpiler conmand line inasmuch as a synbol table is never
generated as a result of a conpiler command line call. A synbol

table may only be produced it the Assenbler is invoked
i ndependently to assenble an assenbly | anguage file.

-1 =<fil enanme>

This option specifies that <filenane> is the nanme of the file
in which the Assenbler's output listing is to be placed. This
causes the listing to be placed in the naned file. This option
has no effect if used on a conpiler commuand line since an
output listing cannot be produced as a result of a conpiler
conmand line call. An Assenbler output listing can be produced
only if the wuser invokes the Assenbler independently to
assenbl e an assenbly | anguage file.

This option prevents an assenbly output listing from being

pr oduced. Thi s is one of the three Assenbler options
automatically passed to the Assenbler when it is called by the
Conpi | er. This option may not be legally specified on a

conpiler conmand line since it conflicts with a preexisting
(and totally different) "-n" Conpiler option.

-o=<fil enane>

This option allows the user to explicitly name the output file,
and assigns the name <filename> to it. If this option is not
specified, the object file will otherwi se be given the sane
nane as the input file, but wth the filenanme extension ".R'".
If the <filename> that is assigned via this option does not
include a filename extension, the default filenanme extension
".R'" will be appended by the Assenbler. This option may be
legally specified on a conpiler command |ine.

- gq=<cl ass>

This option assigns the class nunber indicated by <class>to
the output object file generated by the Assenbler. The <cl ass>
entry may be any number fromzero ("0") to 256. |If this option

C5.3

is not used, the nmodule's class specifier will default to being
class zero (ie "0"). A nodule's class nunber is a file
identification attribute and is usually of inmportance only if
identical filenanmes are assigned to several separate nodul es by
the wuser; in such case, the «class nunber attribute allows any
specific nodule to be unanbiguously distinguished from al
other identically nanmed nodul es. This option may be legally
used on a conpiler command line.

This option suppresses the listing of the synbol table. This
option is one of the three Assenbler options autonatically
passed to the Assenbler when it is called by the Conpiler. This
option may not be legally specified on a conpiler comand |ine
since it conflicts with a preexisting (and totally different)
"-s" Conpiler option.

This option forces all undefined synbols to default to inported
synbol s. Wthout this option any synbol which is not inported
and also not defined inthe file wll generate an error
nessage.

This option prevents a relocatable object file from being
pr oduced. This option may be legally specified on a conpiler
comand |i ne.

This option deletes the Assenbler's input file when the
Assenbler has finished using it. This is one of the three
Assenbl er options passed to the Assenbler when it is
automatically called by the Conpiler: it is the option
responsible for causing the the Conpiler's output file to be
normal |y del eted when the Assenbl er has finished using it. The
effect of the "-z" specifier that is normally supplied by the
Conpiler in such case can be nullified by specifying the "-r"
Conpil er option on the conpiler command |ine, as was menti oned.
earlier. The '-z" Assenbler option may not be legally specified
on a conpiler comand line since it conflicts with a
preexisting (and totally different) "-z" Conpiler option

C5.4

DEFI NI TI ON OF LEGAL | NPUT

This section describes the legal input to the Introl Relocating
Assenbl er.

| NPUT FI LE SPECI FI CATI ON

The input file expected by the Assenbler is an ASCII text file which
contai ns assenbler text. If the input file has been generated by the
Conpiler it will already have an acpropriate ".Mxx>" extension, as
di scussed previously. |If the file naned on the assenbler call I|ine
has no extension specified, the Assenbler will attach t he
appropriate ".Mxx>" extension before it attenpts to |locate the
file. A file's extension is assuned to consist of a period and any
trailing characters.

| NPUT LI NE
Each line input to the Assenbler is assuned to have the form

[<l abel >] [<opfiel d> [<operand>{, <operand>}]] [<coment>]
or
*<comment >
where <l abel > represents a synbol
<opfield> represents an opcode or pseudo-op

<operand> represents an expression
and <comment> represents any string of characters.

Those itenms enclosed in square brackets "[" and "]" are optional

while an itemenclosed in curly brackets, "{" and "}", may be
repeated zero or nore times. Thus an input line may consist of an
optional Ilabel, followed by at |least one space, followed by an

optional opfield, followed by at |east one space, followed by zero
or nore operands separated by commas, optionally followed by at

| east one space and a conment. If a label is specified, it nust
begin in colum one. It is also legal to indicate an entire line as
being a comment by placing a star, "*", in colum one. |If no |abe

is specified, colum one must be a blank or a star. An exanple of a
| egal input line:

loop jnp | oop This is VERY tight |oop

or
* This whole line is a conment
SYMBOLS
Synbols are made up of letters (a..z, A.Z), digits (0..9), the
question mark (?), the dollar sign (s), the underscore (_) and the
period (.). Synbols nust begin with either a letter or a period or

an underscore or a question mark and may be any | ength. In the
special case of synmbols that reference C functions, such synbols

C.5.5

nmust ALWAYS be preceded by a |eading underscore character (ie, just
as t he Conpiler pre-pends an underscore to all synmbols it
gener at es) . The first one hundred characters of a synbol are
retained by the Assenbler. Case is not ignored when the Assenbl er
conpares two synbols: "abc" is NOT equal to "ABC' is NOT equal to
"AbC .

Valid Symbol s:
. abc
abc09
.9
Very. | ong. synbol .only.the.first.100. characters. count
.. Pl A10.

Al t hough one hundred characters are significant to the Assenbler,
when the synbol table is output, only the first sixteen characters
of the synbol are printed so that the printout wll |ook better.

OPCODES

In general, the opcodes recogni zed by the Assenbler are the standard
opcodes, recogni zed by the m croprocessor manufacturer's assenblers.
Al opcodes can be placed anywhere on the source line after the
statement |abel, or at |east one space or tab fromthe begi nning of
the source line if no label is present. Opcodes may be in either
upper or |ower case.

PSEUDO- OPS

Pseudo-ops are a set of mmenpnics which represent comrands to the
Assember rather than instructions to be coded. The |egal pseudo-ops
are described below in the section on assenbler directives.

EXPRESSI ONS

The Assenbl er accepts assenbly type expressions that are arbitrarily
conpl ex. Several operators are allowed in assenbly tine expressions
(alternate forns listed on the sane |line are identical in function):

- unary mnus (two's conpl enent)
not (one's conpl ement)
mul tiplication

di vi si on

nod (remai nder)

addition

subtraction

shift left

shift right

bi twi se and

bi t wi se excl usive or
bitwi se inclusive or
greater than

| ess than

greater than or equal to
= | ess than or equal to
equal to

I = not equal to

ANV ANV— > V AT+ QT)
I QOV/\ >

C.5.6

perator precedence of the above operators is, from highest to
lowest (alternate fornms have the sane precedence as regular forms):

* / %

+ -

>> <<

> < <= >=
== | =

&

Parent heses are allowed in expressions to change the precedence of
an expression.

Assenbly tinme expressions can be wused in the operand of any
assenbl er opcode or directive. Synbols and constant val ues can be
used interchangeably in an expression. All results of expressions at
assenbly tine are 32 bit, truncated integers. Constant values are
defined as a nuneric digit (0..9), followed by zero or nore nuneric
digits or the letters A .F, followed by a radix indicator

n<r adi x>

where nis 0..9,A .F (nust be a valid digit in the given radix),
preceded by a nuneric digit, and <radix> is

H hexadeci nal
0Q oct al
B bi nary

D or nothing decinal
An alternate way of specifying constants is by preceding the
constant by the alternate radix indicator followed by one or nore
valid digits in the given radix.

<al trad>n

where <altrad> is

$ hexadeci mal
@ octa
bi nary

& or nothing decinal

and n is 0..9,A.F (nust be a valid digit in the given radix). No
preceding nurmeric digit is required.

Constants may al so be ASCI|I character constants, either one or two
characters |ong:

''<ch> is a one character constant
"<chch> is a two character constant

C57

The Assenbl er al so recogni zes a special constant that represents the
assenmbly time location counter: "$" or "*". Wen "$" or "*" is used
in an expression, the value taken is the location counter at the
instant of assenmbly of the 1line containing the " $" or "*".

Exanpl es of Constants:

01010101B
17¢

$10
177770

" AB
567H
%9110101
offffh
'@

13

7FFH

$

*

Exanpl es of valid expressions:

(start-end)>2 start mnus end shifted right by two

abc*5 five tinmes the val ue of abc

"al 80h ascii value of "a' ORed with 80 hex

$+4 val ue of the location counter plus four

*-3 val ue of the |ocation counter mnus three

$FFFF<<(3- LABEL) +* 2?27?77
ADDRESSI NG MODES
Al addressing nbdes of the mcroprocessor are recognized by the
Assenbl er.

ASSEMBLER DI RECTI VES

The following is a |ist of assenbler directives. An assenbl er
directive is a line which issues a conmand to the Assenmbler. Al
assenbl er directives may be in either wupper or |ower case.

comm - Conmon Area
This directive has the form

<| abel > comm <si ze>

where <label>is any legal identifier and <size>is an absolute
expression which indicates the size, in bytes, whhich should be
reserved for the label. The commdirective has virtually the sane

effect as the inport directive except that, if the Linker cannot

C5.8

find any definitionto satisfy the external reference, it wll
reserve a location in the bss segnent segment of <size> nunber of
byt es. A label may appear in any nunber of commdirectives.

dc - Define Data Constant
This directive has the form

[<l abel >] dc[. <sizecode>l <expression>{, <expressi on>}

where <sizecode> indicates an optional letter ("b", "W, or 11110)
which indicates the size of the data object (byte, word, or |ong).
The <expression> is an absolute or relocatable expression whose
value is placed in the location. Miltiple locations may be defined
by a single dc directive by specifying multiple expressions
separated by comas. Each expression will be evaluated and the
resultant values will be placed in successive |ocations, each of
which 1is assunmed to be the size indicated by the size code letter
If the size code letter is omtted, the size is assuned to be the
size of an integer (2 bytes). |In the case of the dc directive it is
permtted to have an expression of the form

<string>'

where <string> is one or nore ASCI|I characters. The characters wll
be packed into successive bytes.

ds - Define Data Storage
This directive has the form

(<l abel >] ds[.<sizecode>] <size>

wher e <sizecode> indicates an optional letter ("b","w',or "I") which
i ndi cates the size of the data object (byte, word, long). The <size>
indicates the nunber of data objects for which space is to be
reserved. The nunber of bytes reserved is the <size> nultiplied by
the size of the data object (1, 2, or 4 bytes).

end - End of Assenbly
This directive has the form

end [<l abel >]

where [<l abel >] is an optional |abel which, if specified, causes the
output nodule's entry point to be set to that indicated by the
| abel . The | abel should be an external |abel which nust have been
defined before the occurrence of the "end" directive. This directive
is used to signal the end of input for the Assenbler.

equ - Equate Svnbal Wth A Val ue
This directive has the form

{<l abel >} equ <expression> {<coment >}

The equ directive gives the value of the expression in the operand

C5.9

to the label. The |abel and operand are both required with an equ
directive; the coment is optional. The equ directive is simlar in
function to the "set" directive except that a synbol defined with an
equ cannot be redefined el sewhere in the program The <expression>
cannot contain external references, forward references, or undefined
synbols; it may, however, be rel ocatable.

one equ 1 equate the value 1 to one
five equ one*5 equate the value one tines 5 to five

err - Progranmer-CGenerated Error
This directive has the form

err {<string>}

The err directive will cause an error nessage to be printed by the
Assenbl er. The total error count will be increnented as with any
other error. The err directive is normally used in conjunction with
conditional assenbly directives for condition checking. The assenbly
proceeds nornally after the error has been printed. The optiona
{<string>} may be used to specify the nature of the error generated.

export - External Synbol Definition
This directive has the form

export <synbol >{, <synbol >, ..., <synbol >} {<comrent >}

The export directive is used to specify that the list of symbols is
defined within the current source program and that these synbol
definitions should be passed to the Linker so other prograns may

reference them If the synbols contained in the operand of this
directive are not defined in the program an error wll be
gener at ed.

fcb - Form Constant Byte
This directive has the form

{<l abel >} fcb <expression list> {<coment >}

The fcb directive allows the progranmer to define a byte constant or
series of byte constants. The <expression list> in the fcb operand
is a sequence of one or nobre expressions separated by conmmas. The
value of each expression is truncated to 8 bits and stored as a
single byte in the object program Miltiple expressions are stored

in successive bytes. |If a field between two conmas is enpty, a zero
value 1is stored for that byte. The | abel and comment fields are
optional. An error will occur if the wupper eight bits of each

expression in the operand do not evaluate to all zero's or al
one's.

tabl e fcb 0,1, 2,3,0fh, 27q, 7

fcb 0,,,,,,,,,0 ten zero bvtes
fcb five, one, 4*5,' A

C.5.10

fcc - Form Constant Character
This directive has the form

{<l abel >} fcc <delimter><string><delimnter> {<coment >}
Or
{<l abel >} fcc <expression>, <string> {<conmrent >}

The fcc directive converts a string of characters into a sequence of
bytes containing the characters' ASCII-values. Two forns of the fcc
directive are available. The first form above delimts the string to
be saved by a delinmter character which can be any character except
the nuneric (0..9) digits. The delimiter character cannot appear in
the given string. The second formof the fcc directive takes two
argunents, separated by a conma. The first argunent is an expression
representing the length of the subsequent string. The expression
argunent of the fcc directive nust begin with a nuneric (0..9)
digit. The length expression represents the exact Iength of the
resultant string: if the given string is longer than this |ength,
the string is truncated; if the given string is shorter than this
length, the string is expanded with spaces (ASCIl1 20H). Wen the
| ength expression is longer than the given string, there is a danger
that a conment, if one is given, may be taken as part of the string.
It is usually better to |eave comrents out of this type of fcc
directive.
nmsgl fcc "this is a string "'"is the delimter

fcc /this is another string/ "I" is the delimter
ns92 fcc 64,this is yet another

fcc 26, abcdef ghi j kl mmopqr st uvwxyz

fcc / abcdef ghi j kl mopgr st uvwxyz/

The last two exanples save exactly the same sequence of bytes in
nmenory: the 26 | ower case al phabetic characters, in order

fdb - Form Doubl e Byte Const ant
This directive has the form

{<l abel >} fdb <expression |[|ist> {<comrent>}

The fdb directive is simlar to the fcb directive above except that,
whereas the fcb directive causes each expression in the Ilist to be
taken as a byte value, the fdb directive instead causes each
expression to be taken as a double byte, or word, val ue.

address. tabl e
fdb routine.l,routine.2, routine.3
fdb routine. 4, routine.6
address.table.l ength equ ($-address-table)/2

fdb 1024*48, addr ess. t abl e, address. tabl e. | ength
fdb "AB, 01010101B, 37D

C.5. 11

ident - identify nodul e
This directive has the form

i dent <nanme>, <cl ass>, <rev>

where <name> will be the nane of the output nodule, <class> is an
integer from"C' to "255" which specifies the class nunber to be
given the resultant nodule, and <rev> is a revision nunber to be
given the resultant nodul e. If the class or revision nunbers are
left wunspecified they will default to zero (0). |If the nobdul e nane
is left unspecified it will default to the filename of the assenbly
| anguage input file, mnus any extension

i nport - External Synbol Reference
This directive has the form

i mport (<loc>:]<synk{,[<loc>]<synp}

where <loc> represents an optional |ocation counter specification
and <synp is sone synbol to be inported. The inmport directive is
used to informthe Assenbler that the named synbols are referenced
by the current source program but are defined el sewhere. Each synbol
inthe list my be preceded by an optional absol ute expressi on whose

value rmust be between 0 and 15. The expression indicates the
| ocation counter the corresponding synbol is assunmed to be under
The Linker wll issue an error nessage if the synbol has been

specified under a different |ocation counter than the one |isted on
the inmport directive.

If inmport is not used to specify that a synbol is defined in another
program an error will be generated, and all references to the
synbol in the current programwll be flagged as being undefined.

lib - Load A Disk File
This directive-has the form

lib <fil ename>

The 1lib directive nakes it possible to read a disk file as part of
the assenbly process. The file is used as if is were actually a part
of the source code being assenbled. The <filename> argument shoul d
be a valid file nane for the systemyou are using.

[ib MYFILE M0

list
This directive has the form

list
The list directive reverses the effect of a previous nolist

directive. (See the nolist directive below for a description of its
function).

C.5.12

| oc
This directive has the form

| oc <counter>

where <counter> is an integer within the range 0 to 15. Thi s
directive indicates that all code generated until the next "loc"
directive will be placed under the named Ilocation counter
nol i st

This directive has the form
nol i st

The nolist directive prevents the code following it from bei ng
listed in the assenbler output listing. The nolist directive works

in conjunction with the "list" directive, decribed earlier, to
bracket code which is not to appear in the output listing. A nolist
is in effect until a |Ilist directive appears. The Iist and noli st
directives nmay be nested; therefore, in order to nullify two

successive nolist directives, the Assenbler nust subsequent |y
encounter two successive |list directives.

of f set
This directive has the form

of fset <expression> (<comment >)

The offset directive allows the user to generate |abels whose val ues
represent absolute offsets fromsone origin. This is wuseful in
defining |abels which are to be used as offsets into predefined
t abl es.

offset 0 set offset at zero
dat a ds. b 2 set | abel "data" equal to O
dat a2 ds. b 1 set | abel "data2" equal to 2

C.5.13

rmb - Reserve Menory Bytes
This directive, whichis identical to the ds.b formof the ds
directive discussed previously, is defined as foll ows:

{<l abel >} rnb <expression> { <comrent >}

The rnb directive causes the |location counter to be increnented an

amount specified by the expression in the operand field. Thi s
reserves an area in nenory whose length, in bytes, is equal to the
val ue of the operand expression. The nenory area reserved by the rnb
directive is uninitialized by the directive. The expressi on cannot

contain external references, forward references, or undef i ned
synmbols. The | abel and comment fields are optional

xt abl e rmb 256 save 256 byte for xtable

rmb 20 save 20 bytes for the stack
st ack
data rmb 1024*4 save 4K for data area
buffer.l ength equ 132
buf f er rmb buffer.length reserve buffer space

set - Set Synbol To A Val ue
This directive has the form

<l abel > set <expression> {<coment >}

The set directive assigns the value of the expression to the | abel
Function of the set directive is simlar to that of equ except that
| abel s defined using set can have their val ues redefined i n anot her
part of the programby using another set directive. The set
directive is useful for establishing tenporary or re-usable counters
wi t hin macros.

syn - Equate Labels
This directive has the form

<synbol > syn <synbol >

where <symbol> is any previously defined synbol. This directive
nakes the first synbol synononbus wth the second synbol. The new
synbol has all the attributes of the original. Thus the user nay

redefine opcodes, register nanes, |labels, or any other synbol.

C.5.14

DEFI NI TION OF | NTROL-C

Thi s section provides a detailed definition of the Introl-C
i mpl enentati on of the C programm ng | anguage. It assunes the reader
already has a reasonable understanding of "standard®" C and is not
i ntended to serve as a tutorial on the C |anguage.

LEXI CAL CONVENTI ONS

VWHI TE SPACE

Bl anks, tabs, newlines, and conments are considered "white space"
For the nobst part the Conpiler ignores white space, although
occasionally white space may be required to separate otherw se
adj acent identifiers, keywords, and constants.

COWMENTS

The character conbination slash star (/*) indicates the begi nning of
a conmrent. Comments nust be terminated with a star slash conbination
(*/). Comments are considered white space and have the same effect
as a blank. Introl-C allows comments to be nested, permtting |arge
sections of code (which may already contain coments) to be
"commented out" by sinply bracketing the section with /* and */.
This is not possible in "standard" C since standard C does not all ow
nesting of comments. Introl-C provides a Conpiler option (the "-s
option) to permt the wuser to override this "nesting of comrents"”
feature if the user wishes to disallow nested conments. Each sl ash
star (/*) conbination used in a conment requires that a matching */
term nator also appear in the comrent. That is, the follow ng may
not do what you woul d thi nk:

/* This coment /* doesn't end at this termnator -> */

Conments are renoved fromtext before preprocessor directives are
eval uated; thus preprocessor directives may al so be "conmented out"
by bracketing themwith /* and */.

| DENTI FI ERS

An identifier consists of an Al phabetic letter followed by zero or
nore letters or digits. There is nolimt on the nunber of
characters which nmay be used to specify an identifier, although only
the first ninety (90) characters will be considered significant. A
Conpiler option (the "-y[=<n>]" option) is provided to permt the
user to set the maximumidentifier length to values |less than the
nor mal maxi mum of ninety characters. The underscore, (_), counts as
a letter. Upper and |lower <case letters are considered to be
different.

KEYWORDS
The following identifiers are reserved and nay not be redefined by
t he user.

auto doubl e i nt struct
br eak el se | ong switch
case extern register t ypedef

C6.1

char fl oat return uni on

conti nue for short unsi gned
def aul t got o si zeof whil e

do i f static

CONSTANTS

Integer Constants: Integer constants may be represented in severa
different formats. A string of digits beginning with a O (zero) is
taken to be in octal; the digits 8 and 9, if used, are taken to have
the octal values 10 and 11 respectively. If the constant begins wth
an Ox or OX (zero x) it 1is taken to be hexadecinmal and the
characters A through F (either upper or |ower case) may be used to
represent the decinmal values 10 through 15 respectively. If there is

no preceding O or Ox or OX, the constant is taken to be decimal. A
deci mal constant which is greater than the |argest signed integer is
taken to be a long. An octal or hexadecimal constant which is

greater than the largest wunsigned integer is taken to be |ong.

Long Constants: Long constants nmay be declared explicitly. A
deci mal , hexadeci mal, or octal constant which is term nated with the
letter L (either upper or lower case is permtted) is taken to be

| ong. Long constants are inplemented in 32-bit two' s- conpl ement
form
Character Constants: A character constant is any graphic or

non-graphic character enclosed in single quotes; x' for exanple.
The value of a character constant taken to be the nunerical val ue
used to define that character in the machine's character set
(usually ASCI1).

The single quote character ('), the backslash character (\) and
various non-graphic characters may be represented by the follow ng
character conbi nations:

new i ne \n
hori zontal tab \'t
backspace \b
i nef eed \
carriage return \r
form f eed \ f
backsl ash \\
singl e quote \'
bit pattern \ddd Where ddd is 1,2 or 3 octal digits

whi ch specify the character's val ue.

* Not e: Introl-C nornmally interprets "\-n" (ie the newine
character in C) as being a linefeed character; however, a
Conpil er option (the "-z" option) may be used to instead equate
"\n" with being a carriage return character

Unless a backslash is wused in one of the above character
conbi nations, the backslash wll normally be ignored. Character
constants are represented as a single 8-bit unsigned byte.

C6.2

Fl oati ng Constants: A floating point constant consists of an integer
part, a decinmal point, a fractional part, and an exponential part.
The integer and fractional parts each consist of a string of one or
nore digits. The exponential part consists of an "E' (either upper
or lower case), followed by an optionally signed integer. Either the
integer part or the fractional part (but not both) may be nissing;
either the decinmal point or the exponential part (but not both) may
be m ssing.

Strings: A string consists of a sequence of zero or nore characters
pl aced between a set of double quote narks, as in "this is a
string". A string has the type Array O Characters and thus may be
used anywhere an array of characters would be appropriate. Al

strings are treated as uniquely distinct data objects, even when
they contain identical sequences of characters. The Conpiler wll
place a null byte (\0) at the end of each string so that functions
whi ch scan the string can determine its end by the usual neans. Al

the conventions for representing non-graphic characters which apply

to character constants apply to strings as well. To represent a
double quote inside a string it is necessary to precede it with a
backsl ash. Strings may be continued on a new line by inserting a

backsl ash followed i nmediately by a carriage return. The backsl ash
carriage return combination is not considered part of the string.

PRE- PROCESSOR DI RECTI VES

A preprocessor directive is an instruction to the preprocessor
(lexical scanner) which controls the input to the Conpiler proper
These directives control such things as file insertion (#include),
t ext ual substitution (#define), and condi tional conpilation
(#i fdef). Pre-processor directives always start with a pound sign
(#) and nust begin in columm one. The effect of these directives is
the controlled alteration of the programtext input to the conpiler.
The directives supported by Introl-C are #define, #else, #endif,
#i fdef, #ifndef, #i nclude, #undef. Their function is explained
bel ow.

#define: The #define directive allows an identifier to be equated
with a string. There are two forns of the define directive. One case

handl es sinple string substitution, in which a token-string will be
substituted for any occurrence of the identifier which appears in
the programtext followi ng the #define statenment. The ot her case

all ows paraneter substitution, so that sections of the replacenent
string may be specified at the place in the code where the
identifier is used. The first case of the #define directive, calling
for sinple string substitution, has the followi ng form

#defi ne <identifier> <string>
where <identifier> represents the nane of the identifier and
<string> 1is any series of characters. The <string> is optional

There nust be at |east one space between the word #define and the
identifier. This formof the define statement causes any occurrence

C.6.3

of the identifier which appears in the programtext follow ng the
define statenment to be replaced with the strings. Notice that there
is no semcolon required at the end of a #define directive. The
<string> is taken to be all the characters which followthe
identifier on the #define line. Thus, it is incorrect to place a
sem colon at the end of the line wunless it is actually intended to
i nclude a semicolon in the replacenment string.

The second form of the #define directive |ooks like this:
#define <identifier>(<identifier> ...,<identifier>) <string>

This formof the define statenent (called a nacro definition) has a
set of paranmeters following the first identifier. Notice that the

left parenthesis of the parameter |ist nust inmmediately followthe
first identifier with no intervening white space. |If there is any
white space following the identifier, the preprocessor wll
interpret the #define statement as being of the sinple string
substitution type described above and will treat the paraneter |ist
as if it is part of the <string> The paranmeter list consists of a
series of identifiers separated by commas. Each identifier in the

paraneter |ist should appear at |east once in the <string> Wen the
defined identifier appears in the programtext it may be foll owed by
an argument list enclosed in parentheses and containing strings
separated by commas. |If so, these strings will be substituted for
their respective paranmeter identifiers in the <string> of the define
statement before the <string> replaces the identifier in the program
text.

The #define preprocessor directive has the additional effect of
"defining" an identifier for wuse wth the #i fdef and #ifndef
preprocessor directives. It is permissible to have a #define
statement with no <string> paraneter; this will sinply "define" the
identifier within the preprocessor

#el se: This directive nodifies the effect of a previously declared,
non-term nat ed #i f def or #i fndef conditional conpilation
preprocessor directive. If the lines preceding #else were being
i gnored because of an #ifdef or #ifndef, the #else directive wll
cause the lines followi ng the #el se to be processed. Likew se if the
lines preceding #else were being processed because of an #ifdef or
#ifndef, the lines following the #else will be ignored. The effect
of the #else directive lasts until an #endif directive is
encountered. The #else directive has the follow ng form

#el se

#endif: This directive terminates the the nbst recent previously
declared #ifdef or #ifndef directive. It has the follow ng form

#endi f

#ifdef: The #ifdef directive is used to denote the starting point of
a section of code which is subject to conditional conpilations. This

C 6.4

directive has the form

#i fdef <identifier>

where <identifier> represents an identifier nane. If the naned
identifier is currently "defined" in the preprocessor, the lines
following the #ifdef directive wll be processed until an #else
control line is encountered or, in the absence of an #else, unti

the #endef directive is encountered; any lines between #else (if
present) and #endef are ignored for this case. |If the identifier

naned on the #ifdef lineis NOT currently defined, then only the
lines between the #else (if present) and the #endef termnator line

will be processed. An identifier is taken to be "defined" if it has
previously appeared as the identifier on a #define preprocessor
directive line. An identifier is taken to be "undefined" if it has

previously appeared on an #undef preprocessor directive line, or if
it has never appeared on a #define directive |line.

#ifndef: The #ifndef directiveis simlar in function to #ifdef,
above, except that conpilation of subsequent code is conditiona
upon an t he identifier being currently "undefined" in the
preprocessor. The #ifndef directive has the form

#i f ndef <identifier>

where <identifier>is the identifier nane. |If the named identifier
is NOT currently defined, subsequent I|ines will be processed unti

an #else control line is encountered or, in the absence of an #el se,
until the #endif directive is encountered; any lines between #el se,
(if present) and #endef are ignored in this case. |If the identifier
naned on the #ifndef I|line IS currently defined, only the Iines
between the #else directive (if present) and the #endef term nator
l[ine will be processed. An identifier is taken to be "undefined" if
it has previously appeared as the identifier on an #undef
preprocessor directive line, or if it has never appeared on a
#define preprocessor directive line. An identifier is taken to be
"defined" if it has previously appeared on a #define preprocessor

directive line.

#i nclude: The #include directive causes the file specified on the
#include line to be inserted in the programtext in place of the
#i nclude line. Either of the following forns are permtted:
#i nclude "fil enanme"

or

#i ncl ude <fil enane>

where filenane is the nane of the file to be included. Notice that
the Introl-C conpiler allows either angle brackets or doubl e quotes

to surround the filenane. Included files nay thenselves contain
i nclude statenents; that is, #include directives may be nested, with
a limt inposed only by the constraints of the operating system

C.6.5

#undef: The #undef directive causes the named identifier to be
"undefined". Thus any subsequent #i fdef and #i fndef directives which
reference the identifier will operate as if it was never defined. It
has the form

#undef <identifier>

where <identifier> is the name of the identifier that is to be
undef i ned.

DATA CONVENTI ONS

Al user defined identifiers have two attributes, (1) storage class
and (2) type, which are described bel ow

STORAGE CLASS

An identifier's storage class indicates the location, scope and
lifetime of the storage associated with the identifier. There are
four different storage classes: auto, extern, static, and register

auto: Autonmatic variables are local to the block or function in
which they are defined. They exist only while the block or function
in which they were defined is executing. Their contents are
di scarded upon exit fromthe bl ock. Variables in a function which
are not explicitly defined as having a specific storage class are
assuned to be automatic (ie auto) variables.

extern: External variables exist for the entire execution of the
program and retain their values throughout the execution of the
program An external variable nmay be referenced by any function in
the programfile in which it was defined. Also, separately conpiled
program files which declare external variables of the sane nane
refer to the same variable, thus allowi ng conmmunication between
separately conpiled programfiles.

In Introl-Cthere is little distinction nade between an externa

"definition" and an external "declaration". It is possible to |ink
several files together in which an external variable has been
declared but never defined; the linker wll sinmply define the

variable to fit the declarations. It is also permtted to link files
in which an external variable has been defined nore than once; the

linker wll sinmply treat the extra definitions as if they were
decl arati ons. The linker will issue a warning if an externa
variable has multiple inconmpatible definitions in a group of files
to be |inked. An external variable may be initialized only once

among all the programfiles-to be |inked together

register: The idea behind the register storage class is that it may
be desirable to have a frequently wused variable stored in a high
speed register. The register storage class is a hint to the conpiler
that it should, if possible, place this variable in a high speed
register. In the case of Introl-C the conpiler nakes nost of these
kinds of decisions onits own. Specifying a variable as being of

C.6.6

regi ster storage class is not guaranteed to cause the variable to be
placed in a register. In fact, Introl-Cregister variables are
i dentical to auto vari ables.

static: The scope of a variable declared with a static storage cl ass
is limted to the block, function, or file in which it was defined,
much |ike an auto variable. Unli ke an auto variable, however, the
contents are not discarded when the block containing the variable
termnates. That is, the contents of a static variable renmain valid
bet ween i nvocations of the defining block or function

typedef: The typedef storage class does not actually assign storage
but is sinply a mechanismfor associating an identifier with a data
type. It is included here because it is syntactically identical to a
storage class specifier. Once an identifier has been included in a
typedef declaration it may be used in place of a type specifier in
subsequent type decl arati ons.

TYPE
The second attribute that nay be specified for an identifier is its
type. Types may be divided into two nmmin classes, the first being

the "fundanental" class of data types and the second the "derived"
class of types. The derived types conprise a conceptually infinite
class of types which nmay be constructed from conbinations of
fundanmental types or already defined derived types. The presently
supported fundanental types are:

char
i nt
fl oat

where int nmay be optionally preceded by one of the
nodi fiers: short, long, or unsigned.

The derived types are as foll ows:

arrays of objects of npbst types

functions which return objects of various types
pointers to objects of any type

structures of objects of npbst types

uni ons of objects of nopbst types

The fundanental types are discussed individually bel ow

char: A character variable is defined to be |arge enough to store
any character fromthe machine's character set (assunmed to be ASCII)
as a positive nunber. Al character variables are inplenmented as 8
bit bytes. The Introl-C Conpiler treats character variables as
unsi gned quantities.

int: integers are used to represent integral quantities. |nteger
data objects can be declared in various sizes or as signed or
unsi gned by wuse of an optional nodifier (or the |lack thereof).
integers come in up to three sizes: "short int", "int", and "long

C6.7

int". Short integers are guaranteed not to be |longer than an
i nteger. Integers are guaranteed to not to be |onger than a | ong
i nteger. In Introl-C short integers are 16 bit quantities and | ong
integers are 32 bit quantities. Nornal integers are whatever |ength
is nost appropriate for the nachine in use. (Refer to the other
Appendi ces of this manual for further information on integers which
is specific to the target mcroprocessor.) Al signed integers are
represented in 2's conplement form Unsi gned integers represent
positive quantities.

float: Floating point nunbers are represented in the | EEE standard
floating point fornat. A floating point variable is allocated 32
bits of storage which is interpreted by floating point functions in
the following way: the npst significant bit is interpreted as the
sign of the nunber; the next 8 bits are interpreted as a biased
exponent; the remmining 23 bits are interpreted as a nornalized
manti ssa preceded by an assuned bit which is always set to 1
Fl oating poi nt numbers cover the range from approximately 8.43 tines
10 to the -37th power to 3.37 tines 10 to the +38th power. It is
al so possible for floats to take on values outside this range. Such
values are used to represent positive and negative infinity (+inf,
-inf), and Not-a-Number (NaN). |In the case of NaN the variable will
be encoded in such a way as to contain an error code and an address
whi ch indi cates where and under what circunstances the NaN occurred.

Various printing routines wll actually print out "+inf" for
positive infinity, "-inf" for negative infinity, and "NaN' for
Not - a- Nunber . In the case of NaN, two nunbers separated by commas

may be printed following the NaN, the first represents an error code
and the second the address which was encoded in the number. (See
printf and atof in the Standard Library vol une).

The derived data types are descri bed bel ow.

Arrays: An identifier may represent an array of any type except
function. Notice that an array MAY be of type pointer to function
and indeed this is usually what is neant when one refers to an
"array of functions."

In expressions, array identifiers are converted to a pointer to the
first menber of the array. The converted identifier is, of course,
not an lvalue and thus nmay not be nodified as an actual pointer
m ght . By definition, the expression EI[E2) is identical to
*((El) +(E2)). The rules for adding a pointer to an integer state
that the result is a pointer which is offset from the origina
poi nter by a nunber of bytes equal to the integer multiplied by the

size of the object to which the pointer points. Thus if El is an
array or pointer, and E2 is an integer, then both EI[E2] and
*((E1l)+(E2)) refer to the E2th elenent of El. Milti-dinmensiona
arrays are sinply inplemented as arrays of arrays. That is,

EI[E2](E3] is identical to (EL1[E2])[E3]. Milti-dinensional arrays
are stored rowwise in nmenory (the rightnbst subscript varies
fastest).

functions: An identifier may represent a function which can be

C.6.8

declared as returning any one of the fundanental types as well as a
pointer to any type. A function identifier nay represent two
different things. |If it is followed by a set of parentheses (which
may contain a paranmeter list) it is interpreted as a function call
otherwise it is interpreted as the address of the function

pointers: An identifier nay represent a pointer to any type. A
pointer to a type may be thought of as a variable which contains the
address of an object of that type. That is, a pointer to integer
contains the address of sone variable of type integer. It is
possi ble for a pointer to point to nothing, in which case it is said
to equal NULL; this is signified by setting the pointer equal to
zero. Only three mat hemati cal operations are defined for pointers. A
pointer may be added to an integer, in which case the result is a
pointer which is offset fromthe original pointer by a nunber of
bytes equal to the integer multiplied by the Iength of the object
pointed to. This has the sane effect as specifying the pointer with
the integer as an index (see arrays above). An integer may be
subtracted froma pointer, wth an effect identical to adding the
negated integer to the pointer. Thirdly, a pointer may be subtracted
from another pointer, in which case the result is an integer
representing the nunber of objects separating the objects being
pointed at. This |last operation is defined only when both pointers
point to objects in the sane array.

structures: An identifier nay represent a structure whose el enents

may be of any type except "function". (See the note in "Arrays"
above). A structure allows a set of variables of various types to be
grouped under a single name for convenience. The only operations

which can be performed on a structure are (1) to take its address
(using the "&" operator), and (2) to access one of its nenbers.
Functions nmmy not be assigned or copied as a unit nor nay they be
passed to or returned fromfunctions (pointers to structures nay be
passed to and returned from functions, however). Wen referencing
structure nmenber s t hr ough poi nters, t he construct
(*<Poi nter>).<nmenber> is equivalent to <pointer>-><nenber>, where
<pointer> is an expression which evaluates to "pointer to structure"
and <menber> is a nmenber of the structure pointed to.

Introl-C provides separate nanme spaces for all structure and union
nmenber nanes, allowing identical nmenber nanes to be wused in
different struct or union declarations with no restrictions. Thus,
two different structures may each have a menber with the same nane.
Anot her advantage to having all structure and uni on nenber nanes in
separate nanme spaces is that the Conpiler can do nore extensive
type-checking of structure references. To access a nmenber of a
struct or union through a pointer expression, the pointer expression
must be of type pointer to the particular structure or -union in
guestion. This type checking can be overridden if desired by using a
cast to cast the pointer to the type of the structure to be
accessed.

unions: An identifier may represent an object which can contain any
one of several types of any type except function. (See arrays).

C6.9

Introl-C provides separate nanme spaces for all structure and union
nmenber nanes, allowing identical names to be wused in different
struct or union declarations. Thus, two different unions may each
have each have a nenber with the sane nane. The Conpiler will flag
as an error a reference to a union or structure menber which is nmade
with a pointer which is not of type pointer to the union or
structure referenced. If it is desired to defeat this type-checking,
the pointer in question may be cast as a pointer to the union or
structure to be referenced. (See "structures" above).

DECLARATI ONS

Decl arations are the mechanismfor associating an identifier with a
type and storage class. There are two mmin types of declarations,
Dat a Decl arati ons and Function Definitions.

DATA DECLARATI ONS

A data declaration consists of an optional storage class specifier,
foll owed by an optional type nodifier, followed by an optional type,
followed by zero or nore declarators (each of which nay be foll owed
by an initializer) separated by comms, followed by a senicolon
";". The storage class specifier may be any of the follow ng:

auto
extern
register
static

t ypedef

A type nodifier nay be any of the foll ow ng:

| ong
short
unsi gned

A type may be any of the follow ng:

char

i nt

fl oat

struct <identifier> {<nenber decl arations>}
union <identifier> {<menber decl arations>}
<t ypenane>

A declarator may be an identifier, or a declarator enclosed in
parent heses, or a declarator preceded by a star, or a declarator
followed by a set of enpty parentheses, or a declarator followed by
a set of brackets which my optionally enclose a const ant
expr essi on.

Al itens are optional except the declarator. |f the storage class
is not specified and the declaration is wthin a function
definition, then auto will be assuned; otherwi se extern wll be

assuned. Type nodifiers nay appear only for a type of int, or when

C.6.10

the type is left unspecified. If the type nodifier is not specified,
int will be assuned.

The typedef storage class specifier does not reserve storage but is
used to associate an identifier wth a data type. It is included
here because, from a syntactical point of view it 1is a storage
cl ass specifier.

For structure and wunion types either the <identifier> or the
(<nmenmber decl arations>) part may be omtted (but not both). That is,
a structure or union type consists of the follow ng: the keyword
"struct" or "union", followed by an optional identifier, optionally

followed by a set of braces which enclose a list of menber
decl arati ons. A nenber declaration consists of an optional type
specifier followed by zero or nore declarators where declarators are
as defined above. The <identifier> part nmay appear wthout the

{<menber declarations>) part, provided that the same identifier has
previously appeared in a structure definition which included the
(<menber declaration>) part.

The type may be a <typenane>, where <typenanme> was a previously
declared identifier in a declarator which appeared in a declaration
havi ng a storage class of "typedef".

| NI TI ALI ZERS

As nentioned above it is possible for a declarator to be foll owed by
an initializer. The initializer is a vehicle by which the progranmer
may specify the initial value of a variable. For external and static
variables the value is set once, logically, at conpile tine. For
automatic variables the value is assigned to the variable on each
entry to the function (ie at run tine).

The syntax for the npost general use of initializers, as applied to
external or static variables, is as follows: an equal sign

followed by an initializer-list. The initializer-list may consist of
a constant expression or an open brace, "C', followed by zero or
nore initializer-lists separated by conmms, followed by a closing
brace, ")". The constant expression is defined below in the
par agraph on "Expressions".

Wen the itemto be initialized is a scalar, (char, int, |ong,
float, pointer), the initializer my consist of only a single
constant expression which may, optionally, be enclosed in braces,

HCHDE

For any itemwhich is an aggregate, such as a structure or array,
the initializer consists of an initializer-list enclosed in braces.
The initial values are applied to each element of the structure or
array in the order in which they appear. If fewer val ues appear than
there are elenents in an array or nenbers in a structure, then the
remai ni ng el enents or nmenbers are initialized to zero.

Thi s definition nmay be applied recursively to aggregates of
aggregates (sub-aggregates) so that the values of elements of

C.6.11

sub-arrays and sub-structures nmay be explicitly defined. The
symantics for subaggregate initialization are as follows:

| f the initializer-list begins with a left brace, then the
succeeding initializers, up to the next right brace, apply to the
sub-aggregate. If a right brace is encountered before all the val ues
of the sub-aggregate are initialized, the succeedi ng nenbers of the
sub- aggr egat e are initialized to zero. |If the sub-aggregate
initializer-list does not begin with a left brace, then as many
elements from the initializer-list are used as is necessary to
initialize all the nmenbers or elenments of the sub-aggregate.

It is not permitted to initialize variables of type union

In the case of an array in which the size is not specified, the
Conpiler will set the size of the array to the nunber of initialized
val ues specified for it.

In the special case of a character array the initializer may take
the formof a constant string. The array will be initialized such
that each element of the array is set to the value of the
correspondi ng character in the string constant. The term nating NULL
is also considered part of the initializer and is encoded in the
array. As above, if the size of the array is left unspecified the
size wll be the sanme as that of the NULL terminated string which
initializes it.

The syntax for an initialized automatic variable is slightly
different than for that of an external or static variable. It may
consi st of an equal sign, "=", followed by an expression which nay,
optionally, be enclosed in braces, "(", and ")". Notice that this
definition allows an arbitrarily conplex expression which my
i ncl ude constants, functions, and previously declared variables. The
expression nust evaluate to a scalar or float; it is not pernmitted
to initialize aggregate (structure or array) autonmmtic vari ables.

FUNCTI ON DEFI NI TI ONS

A function definition is the nechanismby which a code segment is
defined. Mdst prograns include a function called "main" which is, by
default, the function executed when the programstarts. A function
definition is indicated by an optional storage class specifier
followed by an optional type nodifier, followed by an optional type
specifier, followed by a declarator followed by a set of parentheses
which enclose zero or nore identifiers, followed by zero or nore
data declarations, followed by a compound statenent. The storage
cl ass specifier may be any of the follow ng.

extern
static

The type nodifier may be any of the follow ng.

| ong
short

C.6.12

unsi gned
The type may be any of the foll ow ng.
char
i nt
f1 oat
<t ypenane>

If the storage class is static, then the function will be known only
in the programfile in which it was defined; otherwise it will be
known externally. If the storage class is omtted the function
defaults to external. The type nodifiers may be used only for

functions whose type specifier is int or wunspecified. The type
specifiers in conjunction with the declarator formindicate the type
of the function's return val ue. The type of the return value nay
only be char, int (long, short or unsigned), float, or pointer. |If
the type specifier is omtted it defaults to int.

ABSTRACT TYPE DECLARATI ONS

There are two cases in which it may be necessary to refer to a data
type without referring to any particular identifier. One of these
cases involves the cast nechani smand the other involves the sizeof
operator. In either case it may be necessary to specify an abstract
type. An abstract type is indicated by an optional type nodifier

followed by a type specifier, followed by an abstract declarator

where an abstract declarator is defined the sane as a norma

decl arat or above except that no identifier is pernmtted. That is, an
abstract declarator may be a null sequence of characters, or an
abstract declarator preceded by a star, or an abstract declarator
followed by a set of brackets (which may contain a constant
expression), or an an abstract declarator followed by an enpty set
of parentheses, or an abstract declarator enclosed in parentheses.
In the last case the sequence of characters inside the parentheses
may not be null. 1In the case of a cast, either the type nodifier or
the type specifier, but not both, may be omtted. If the type
specifier is onmtted int is assuned.

EXPRESSI ONS

An expression is any construct which returns a value. The C | anguage
is very general about expressions. Expressions include constants,
strings, identifiers which have been suitably decl ared, and
expressions enclosed in parentheses. The result of any expression
operation on an expression is also an expression. An expression may
have side effects. This nmeans, for exanmple, that a variable nmay
become changed in the process of evaluating an expression. This is
typical of function calls but nmay also occur in some of the
arithmetic expressions, as with the increnent operator (x++) where
the variable is increnented after its value is taken

A stringisin all cases treated like an array of characters. A

string is the sane syntactically as a character array identifier and
thus is of type pointer to character when used in an expression

C. 6.13

Any expression nay be enclosed in parentheses. The effect is to
cause the enclosed expression to be conpletely evaluated before
operators external to the parentheses are applied. The resultant
type and value are that of the enclosed expression. The fact that an
expression evaluates to an Ivalue is not altered by encl osing such
an expression in parentheses.

CONVERSI ONS

The conversion of a value fromone data type to another nmay be done
explicitly, by wusing a cast for exanple, or may be inplicitly
carried out when sone operation is perforned, as when an integer is
assigned to a float.

| MPLI G T CONVERSI ONS

Many conversions are carried out automatically by the Conpiler,
particularly in the case of arithmetic expressions. The genera
pattern for deciding what will be converted to what in an arithnetic
operation involving two operands is as follows:

If either operand is of type float the other will be converted to
float and that will be the resultant type;

O herwise if either operand is of type long int the other will be
converted to long int and that will be the resultant type;

O herwise if either operand is of type unsigned int the other

will be converted to unsigned int and that will be the resultant
type;

O herwise if either operand is of type int the other operand will
be converted to int and that wll be the resultant type;
O herwise if either operand is of type short int the other
operand will be converted to short int and that wll be the

resul tant type;
ot herwi se both operands must be of type char and that is the
resul tant type.

Notice that character expressions are not always automatically

converted to integer and, in general, when wused in arithnetic
expressions, a character expression is converted to the type of the
ot her operand. Thus, when two expressions of type character are
added, the result will be of type character. |If the result cannot

fit in a character size space an overflow condition wll occur.
Char acter expressions are, however, always converted to integer when
used as function paraneters.

The following conventions apply to the results of various
conversions. Note that Integral includes all types other than float.

Float to integral Type: The conversion from float to an integra
type is as follows. The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0), and this
is the resultant value if the truncated value is within the range
which can be represented by the specified integral type. If the
truncated value is larger than that which can be represented by the

C.6.14

specified integral type, then the result is undefined.

Integral to Float Type: The conversion of an integral expression to
type float results in the value of the integral expression as
represented in floating point format. If the integral expression has
nore bits representing its value than the floating point allows in
its nantissa, there will be sone | oss of precision when |arge
nunbers are converted. Presently this happens only when converting
long integers to float.

Integral to Integral Type: if t he bit length of the source
expression type is longer than the bit Iength of the resultant type,
then the only conversion done is to discard the excess high order
bits. Wien the bit length of the destination type is |longer than the
bit Iength of the source expression type, excess high order bits
will be filled with either the sign bit of the source expression or
zeros. |If the source expression is of unsigned type then high order
bits are zero filled; otherwi se they are sign filled. If both source
expression type and destination type are the same Ilength then no
actual change in the bit pattern takes place.

EXPLI CI T CONVERSI ONS

Sonetimes it is desired to force a conversion explicitly. This is
called casting an expression fromone type to another, and the
mechanism by which this is doneis called a cast. A cast is
i ndicated by an expression preceded by a set of parentheses which
enclose a type specifier followed by an abstract declarator (as
described in the paragraph on abstract data decl arations under DATA
CONVENTI ONS) .

LVALUES

There is a distinction nade between expressions which evaluate to
constant values and those which evaluate to variable val ues. An
expression which evaluates to a variable value is called an |val ue.
Lval ues may be changed, whereas constant values may not. It nakes no
sense, for exanple, to place a constant value (a non-lvalue) to the
left of an assignnent operator because no new val ue nmay be assi gned
to it. Any attenpt to do this will be flagged as an error by the
Conpi | er. In fact, the "I" in the term "lvalue" is intended as a
rem nder that this value nay be placed to the left of an assignment
oper ator.

CONSTANT EXPRESSI ONS

In certain cases Introl-C may require the use of a constant
expr essi on. The set of constant expressions is a subset of the set
of regular expressions. Constant expressions are expressions which
can be evaluated to a scalar at conpile tinme and thus nmay contain no
variables or floating point values. Likewi se a constant expression
may contain no operators which change the value of any of their
operands or have variable results. The |egal constant operators are
the unary operators:

I ~ - sizeof
t he binary operators:
* /% + - << >> < <= > >= = = & " | && |

C.6.15

and the trinary operator:
?:

In the case of a constant expression used as an initializer, the
expression nay alternatively consist of a floating point constant
(possibly preceded by a negative sign), or an expression which
eval uates to a constant pointer.

A constant pointer is one whose value is known at conpile tine. This
i ncl udes function nanes, static and external array nanes, static and
external variables which are preceded by the addressi ng operator
"&', or any of the above offset by a constant expression. The
addresses of automatic variables are not pernmitted in such an
expression because their location is dynam c (not known at compile
tinme).

OPERATORS

The following is a list of operators in the order of their priority.
Also listed is the order of evaluation of operators when two or nore
operators of the same priority appear in an expression

OPERATOR EVALUATED
O 11 -= . left to right
! ~ o+t -- - (<type>) * & sizeof right to left
* | 0 left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== I = left to right
& left to right
n left to right
| left to right
&& left to right
|] left to right
?: right to left
= 4= .= *= [= O >>= <<= &= ~N= = right to left

left to right

The operators are described below in the order of their priorities.

ADDRESSI NG OPERATORS
Addr essi ng operators evaluate left to right.

Function Operator () The function operator is indicated by a pair of
parent heses preceded by an expression which evaluates to type
"function". There may optionally be a |ist of expressions separated
by comms within the parentheses. The effect is to execute the
function naned. The result of the function operator is an expression
which has a value of whatever type has been defined as the return
type of the function. The expressions within the parentheses may be
of any type and any nunber; no checking is done to verify that the
types and number of the expressions within the parentheses in the

C.6.16

function call agree with the types and nunber specified in the
function decl arati on. Functi ons may be called recursively.

Array operator [] The array operator is indicated by an expression
followed by a pair of brackets which contain an expression. One of
the expressions nust evaluate to type pointer while the other nust
evaluate to an integral type. It is usually considered a good
programm ng practice to make the first expression (the one outside
the brackets) the one which evaluates to type pointer. This is not
of necessity, however, due to the fact that el[e2] is defined to be
identical to *((el)+(e2)). Notice that addition is a conmutative
operator and, thus, so is the array operator. The result of an array
operation is an expression which is of the type pointed to by the
poi nter expression. The array operator returns the value of the
object that is pointed to when the integral value is multiplied by
the size of the type pointed to and then added to value of the
poi nter. The effect is to return the value of the object which is
di spl aced the integral nunber fromthe begi nning of an array pointed
to by the pointer.

Structure Menber Operator. The structure menber operator is
indicated by an expression which evaluates to type structure,
followed by a period, ".", followed by an identifier; as in "a.b".

In Introl-C the expression nmust evaluate to a structure type which
has the identifier as a legal nenber; otherw se, the Conpiler wll
generate an error nessage. The result is an expression whose type
and value is that of the indicated nenber in the structure.

Structure Menber Pointer Operator -> The structure nenber pointer
operator is indicated by an expression which evaluates to type
pointer to structure followed by a dash-greater-than character
conbination, "->", followed by an identifier; as in "a->b" (there
may be no white space between the dash and the greater than sign).
In Introl-Cthe type of the structure pointed to by the expression
nmust have the identifier as a I|egal nenber. The result is an
expression whose type and value is that of the indicated nenber in
the structure pointed to.

UNARY OPERATORS
Unary operators evaluate right to left.

Logi cal Not Operator ! The logical Not operator is indicated by an
exclamation mark, "!", followed by an expression. The result is an
expression whose type is character and whose value is 0 (zero) if
the original expression was non-zero and 1 (one) otherw se.

Bitwise Not Operator ~ The bitwi se not operator is indicated by a
tilde, "~", followed by an expression. The result is an expression
with a value equal to the one's conmplement of the origina
expression and with the sane type as the original expression. The
bitwi se Not operator may not be applied to types pointer and float.

Increment Operator ++ The increnment operator has two forms. It is
indicated by a double plus (two successive plus signs wth no

C. 6.17

intervening white space, "++" either immediately preceding or
following an expression. The expression nmust evaluate to an |val ue
(that is, a variable, something which can be witten to). Wen the
double plus precedes a variable, the variable is incremented by one
and the resultant expression is the new value of the variable. Wen
the double plus follows a variable, the variable is also increnented
but the resultant expression is the value the variable had before it
was i ncrenented. VWhen the increnent operator is applied to a
pointer, the pointer is incremented by the length of the object to
which it points; thus it will point to the next object in sequence

Decrenent (Qperator -- The decrenment operator (like the increnent
operator) has two forns. It is indicated by a double mnus (two
successive mnus signs with no intervening white space, "--") either
i mediately preceding or follow ng an expression. The expression
nmust evaluate to an |lvalue (that is, a variable, something which can
be witten to). When the double minus precedes the variable the
variable is decrenented by one and the resultant expression is the
new value of the variable. VWen the double minus follows the
variable, the variable is also decrenented but the resultant
expression is the value the variable had before it was decrenented.
When the decrement operator is applied to a pointer the pointer is
decremented by the length of the object to which it points; thus it

will point to the previous object in sequence.
Unary Mnus Operator - The unary minus operator is indicated by a
m nus sign, "-", followed by an expression. The resultant expression

is the al gebraic negation of the original expression. The action of
the unary minus is undefined when used on types unsigned integer and
character (which is also unsigned).

Cast Operator (type) The cast operator is indicated by a data type
nane in parentheses, followed by an expression. A data type nane is
like a data type declaration but without the object to which it
would normally refer. For exanple, to cast sone expression to type
"function returning pointer to character", one would type "(char
*())EI" (where El is an expression). The expression may be of any
type. The resultant expression has the type specified by the cast.

Indirection Operator * The indirection operator is indicated by a
star, "*", followed by an expression which nust be of type pointer
The resultant expression has the type and value of the object to
whi ch the pointer points.

Addr ess perator & The address operator is indicated by an
anpersand, "&", followed by an |Ivalue. The resultant expression is a
pointer to the object indicated by the Ival ue.

Size of Operator sizeof The size of operator is indicated by the
keyword, "sizeof", followed by either a type nane enclosed in
parent heses, or an expression. The result is an expression of type
i nteger whose value is the size, in bytes, of an object of the type
i ndi cat ed.

C.6.18

MULTI PLI CATI VE OPERATORS
Mul tiplicative operators evaluate left to right.

Multiplication Operator * The multiplication operator is indicated
by an expression, followed by a star, "*", followed by an
expressi on. The result is an expression whose value is that of the
al gebraic multiplication of the two expressions.

Division operator / The division operator is indicated by an
expression, followed by a slash, "/", followed by an expression. The
result is an expression whose value is that of the algebraic

division of the first expression by the second. If both of the
expressions are of integral type then the result will also be of
integral type and any fractional result will be discarded.

Modul o Operator % The nodul o operator is indicated by an expression

followed by a percent synbol, "%, followed by an expression. The
result is an expression whose value is the first expression nodul o
the second expression. That is, the first expression is integer

divided by the second expression with the result wequal to the
remai nder. Both expressions nmust be of integral type.

ADDI TlI VE OPERATORS
Additive operators evaluate left to right.

Addition Operator + The addition operator is indicated by an
expressi on, followed by a plus synbol, "+", followed by an
expression. The result is an expression whose value is the al gebraic
sum of the expressions.

Subtraction Qperator - The subtraction operator is indicated by an

expr essi on, fol | oned by a minus sign, "-", followed by an
expression. The result is an expression whose value is the al gebraic
result of the second expression subtracted from the first

expr essi on.

SH FT OPERATORS
Shift operators evaluate left to right.

Left Shift Operator << The left shift operator is indicated by an
expression, followed by a double | ess-than symbol, "<<", followed by
an expression. The result is an expression whose value is that of
the first expression after having been bitwi se left shifted by the
nunber of bits indicated by the second expression. Zeros are shifted
into the loworder bit positions. Both expressions nust be of
i ntegral type

Right Shift Operator >> The right shift operator is indicated by an
expression, followed by a double greater-than synbol, ">>", foll owed
by an expression. The result is an expression whose value is that of
the first expression after having been bitw se right shifted by the

nunber of bits indicated by the second expression. If the first
expression is of signed type, its sign bit will be shifted into the
high order bit positions; otherwi se zeros wll be shifted into the

C.6.19

hi gh order bit positions. Both expressions rmust be of integral type.

RELATI ONAL OPERATORS
Rel ati onal operators evaluate left to right.

Less-Than Operator < The |less-than operator is indicated by an
expression, followed by a Iless-than synbol, "<", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if the first expression is algebraically
| ess than the second expression, and a zero (false) val ue otherw se.

Less- Than Equal Operator <= The Iless-than equal operator is
i ndicated by an expression, followed by a | ess-than equal character
conbi nation, "<=", followed by an expression. There may be no white
space between the |ess-than synbol and the equal synmbol. The result
is an expression of type character which has a non-zero (true) val ue
if the first expression is algebraically Iless than or equal to the
second expression, and a zero (false) val ue otherw se.

Greater-Than Qperator > The greater-than operator is indicated by an
expression, followed by a greater than synbol, ">", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if the first expression is algebraically
greater than the second expression, and a zero (false) value
ot herwi se.

Greater-Than Equal operator >= The greater-than equal operator is
indicated by an expression, followed by a greater-than equa
character conbination, ">=", followed by an expression. There may be
no white space between the greater-than synbol and the equal synbol.
The result is an expression of type character which has a non-zero
(true) value if the first expression is algebraically greater than
or equal to the second expression, and a zero (false) value
ot herw se.

EQUALI TY OPERATORS
Equal ity operators evaluate left to right.

Equal To Operator == The equal-to operator is indicated by an
expression, followed by a double equal sign, "==", followed by an
expression. There may be no white space between the two equal signs.
The result is an expression of type character which has a non-zero
(true) value if the first expression is algebraically equal to the

second expression, and a zero (false) val ue otherw se.

Not Equal Operator != The not-equal operator is indicated by an
expr essi on, foll owed by an exclamation nmark equal character
conbination, "!=", followed by an expression. There may be no white

space between the exclamation mark and the equal sign. The result is
an expression of type character which has a non-zero (true) value if
t he first expression is algebraically wunequal to the second
expression and a zero (fal se) val ue otherw se.

C.6.20

Bl TW SE AND
The bitw se And operator evaluates left to right.

Bitwise And Operator & The bitwi se And operator is indicated by an
expr essi on, fol | oned by an anpersand, "&', followed by an
expression. The result is an expression whose value is the bitw se
And of the two expressions. Both expressions nust be of integra

t ype.

Bl TW SE EXCLUSI VE OR
The bitwi se exclusive O operator evaluates left to right.

Bitwi se Exclusive Or operator - The bitw se exclusive or operator is
i ndi cated by an expression, followed by a caret, "-", followed by an
expressi on. The result is an expression whose value is the bitwi se
exclusive O of the two expressions. Both expressions nmust be of

i ntegral type

Bl TW SE OR

The bitwise O operator evaluates left to right.

Bitwise O Operator | The bitwise O operator is indicated by an
expression, followed by a vertical bar, "|", followed by an
expr essi on. The result is an expression whose value is the bitwi se
O of the two expressions. Bot h expressions nmust be of integra
t ype.

LOG CAL AND

The | ogi cal And operator evaluates left to right.

Logi cal And operator &% The | ogical And operator is indicated by an
expression, followed by a double anpersand, "&&', followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if both expressi ons had non-zero val ues, and

a zero (false) value otherw se. Al Logical - And expressions are
evaluated in short circuit node. That is, the expressionis
eval uat ed left toright and, if the first expression has a zero

val ue, then the second expression is not eval uated.

LOG CAL OR

The logical O operator evaluates left to right.

Logical O Operator || The logical or operator is indicated by an
expression, followed by double vertical bars, "||", followed by an

expression. The result 1is an expression of type character which has
a non-zero (true) value if either of the expressions has a non-zero
value, and a zero (false) value ot herw se. Al Logical-O
expressions are evaluated in short circuit node. That is, the
expression is evaluated left to right and, if the first expression
has a non-zero val ue, then the second expression is not eval uated.

C.6.21

CONDI Tl ONAL EXPRESSI ON
The conditional expression evaluates right to left.

Conditional operator ?: The conditional expression operator, a
trinary operator, is indicated by an expression, followed by a
question mark, "?", followed by an expression, followed by a colon
":", followed by an expression. If the first expression evaluates to
a non-zero value, the second expression is evaluated; otherw se the
third expression is evaluated. If the second and third expressions
are of different type, the wusual arithmetic conversion conventions
are applied to make the types identical. The resultant expression
has the sane type and val ue as the eval uated expression

ASSI GNVENT OPERATORS
Assi gnment operators evaluate right to left

Assi gnnent Qperator = The assignnent operator is indicated by an
I val ue, followed by an equal sign, "=", followed by an expression.
The Ilvalue's old value wll be replaced by the value of the
expressi on. The result is an expression wth a type and val ue the

sane as that of the [|val ue.

Updat e Assi gnnent Operator <binary operator >= The update assi gnment

operator is indicated by an |val ue, followed by a binary
operator-equal sign character conbination (for exanple += -= *=
l=, %, >>= <<=, &=, "=, or |=), followed by an expression. There

may be no white space between the binary operator and the equa
sign. The effect of

<l val ue> op= <expressi on>
is identical to

<l val ue> = <lval ue> op <expressi on>
except that the Ivalue is evaluated only once. The result is an
expression with the same value and type as that of the |value.

COWA
The conma operator evaluates left to right.

Conma Qperator , The conmm operator is indicated by an expression
followed by a comm, ",", followed by an expression. Each expression
is evaluated fromleft to right. The resultant expression has the

type and val ue of the second expression

STATEMENTS

Statements include the set of all expressions along with various
constructs which control program flow. Statements are executed
sequentially wunless the programflow has been altered by one of the
program fl ow control statenents

EXPRESSI ON STATEMENT

Any expression nay be used as a statenent if it is termnated by a
sem col on. The resultant value of the expression has no effect.
Presumably the expression wll have sone side effect, such as
altering a menory location as is done in an assignment expression

C.6.22

An expression statenent which has no side effects is flagged as an
error by the Conpiler.

COVPOUND STATEMENT
A conpound statenent, also called a block, consists of a left brace,
"(", followed by zero or nore data declarations, followed by zero or

nore statenments, followed by a right brace, ")". A bl ock has the
effect of "bracketing" a group of statenments so that they becone,
for syntactical purposes, a single statenent. Thus the conpound

statement nmay be used anywhere any other statenment may be used. Al
data declared inside the block is local to the block unless
speci fied as bei ng external

CONDI TI ONAL STATEMENT

The conditional statenent has two forns. One formis the follow ng:
the keyword "if", followed by a set of parentheses containing an
expression, followed by a statenent. The expression is eval uated
and, if its resultant value is non-zero, then the statement will be
executed; otherwise it will not be executed. The other formof the
conditional statement consists of the keyword "if", followed by a
set of parentheses containing an expression, followed by a
statenent, followed by the keyword "else", followed by a statement.
The expression is evaluated and, if its resultant value is non-zero,
then the first statenent is executed; otherw se the second statenent
i s executed.

VWHI LE STATEMENT

The while statement is indicated by the keyword "while", followed by
a set of parentheses containing an expression, followed by a
st aterment . The expression will be evaluated repeatedly until it
evaluates to a zero value with the statenent being executed after
each non-zero evaluation of the expression. If the expression
evaluates to zero initially, then the statenent will not be executed
at all.

DO STATEMENT

The do statement is indicated by the keyword "do", followed by a
statement, followed by the keyword "while", followed by a set of
par ent heses containing an expression. The statenent is executed
repeatedly, with the expression being evaluated after each execution
of the statenent, wuntil the expression evaluates to zero. The
statenment is always executed at |east once.

FOR STATEMENT

The for statenent is indicated by the keyword "for", followed by an
open paren, "(", followed by an optional expression, followed by a
sem colon, ";", followed by an optional expression, followed by a
sem colon, ";", followed by an optional expression, followed by a
cl ose paren, ")", followed by a statenment. The first expression wll
be evaluated exactly once. The second expression will be eval uated
repeatedly wuntil it evaluates to a zero value, with the statenent
being executed and the third expression being evaluated after each
non-zero eval uati on of the second expression. Notice that all three

of the expressions are optional. If the second expression is onitted

C.6.23

it will be assunmed to be an expression which always evaluates to a
1, thus making the for |oop execute forever. The effect of omitting
the first or the third expression is sinply that there wll be
nothing to evaluate in their respective positions.

SW TCH STATEMENT

The switch statenent is indicated by the keyword "switch", followed
by an expression enclosed in parentheses, followed by a statenent.
The expression is evaluated and cast to type integer. The resultant
value is then natched against any case |labels in the statenent

portion of the swtch. If a match is found, execution wll be
resuned at the location where the case |abel was defined. If no
match is found, but there is a default prefix in the statenent
portion of the switch statement, then execution will continue at the
location following the default prefix; otherwise no part of the
statement portion of the switch will be executed.

CASE LABEL STATEMENT
The case |label may only appear in the statement portion of a switch

st atement . It is indicated by the keyword "case", followed by a
constant expression, followed by a colon ":", followed by a
st atement . Its effect is to mark the statement as a possible entry

point in a switch statenent.

DEFAULT STATEMENT

The default statement nmay only appear in the statement portion of a
switch statement. It is indicated by the keyword "default", foll owed
by a colon, ":", followed by a statenent. |Its effect is to mark the
statement as the default entry point in a switch statement. This
entry is taken when none of the case |abels natches the expression
in the switch statenent. The default statenent nmay appear no nore

than once in any given switch statenent.

BREAK STATEMENT

The break statenent is indicated by the keyword "break"”, followed by
a semcolon, ";". The break statement causes termi nation of the
smal | est enclosing while, do, for, or switch statement. Contro
passes to the statenent following the termnated statenent.

CONTI NUE STATEMENT

The continue statement is indicated by the keyword "continue"
followed by a semcolon, ";". The continue statement is pernmitted
only in while, do, and for statements. |In each of these statenents
the continue statenent causes inmedi ate conpletion of the statenent
portion of the above nentioned |ooping statenents. The effect is
that the current iteration of the |ooping statenent term nates and
execution continues at the point in the |ooping statenent which is

normal |y executed when the | oop conpletes an iteration

RETURN STATEMENT

The return statement is indicated by the keyword "return"
optionally followed by an expression, followed by a semcolon, ";"

The return statement causes a function to return control to its

caller. If the optional expression is included, it will be eval uated

C.6.24

and its value will be the return value of the function; otherw se
the function's return value is undefined. The return statement is
optional; thereis an inplicit "return" statenent at the end of
every function body.

GOTO STATEMENT

The goto statenent is indicated by the keyword "goto", followed by
an identifier followed by a semicolon, ";", where the identifier is
a |abel appearing on a |abel statement which exists in the sane
function as the goto statenent. The goto statenent causes control to
be transferred to the statenent marked by the [abel identifier. The

target |label nust appear in the sane function as the goto.

LABEL STATEMENT
The |abel statenent is indicated by an identifier, followed by a

col on, ", followed by a statenent. |Its effect is to nark a
statenment as a possible destination for a goto statemnent.

NULL STATEMENT

The null statenent is indicated by a |lone senmicolon, ";". 1t has no
ef fect except to take up the place of a statement. It nmay be placed
anywhere a statenment is permtted.

C.6.25

C.6.26

APPENDI CES

This section contains mscellaneous reference information which may
be useful to the progranmer.

Appendix A Introl-C [/ Standard C CAl1l
Appendix B Data Type Conversions C.B1
Appendix C 6809-Specific Aspects of the Conmpiler C.Cl1

1.

2

APPENDI X A
I NTROL- C / STANDARD C
The follow ng differences exist between Introl-C and "standard C' as
it is defined in the Kernighan and Ritchie book, "The C Programm ng
Language".
OW SSI ONS

1) The current release of Introl-C does not support fields.

2) The current release of introl-C does not support the double data
type.

3) The current release of Introl-C does not support the #line and
#if preprocessor directives (all other directives, including #ifdef
and #i fndef, are supported, however).

EXTENSI ONS

4) Nesting of coments is permitted in Introl-C. Thus |arge sections
of code may be "comrented out" by sinply bracketing the code segnent
with /* and */.

5) Introl-C provides separate nane spaces for all structure and
uni on menber nanes, allow ng the use of identical nanes in different
struct and union decl arations.

6) Introl-C does not permt t he use of t he obsol ete
assi gnment -update operator in which the operator follows the equa
sign. Thus x=-1 is not identical to x-=l in Introl-Cas it may be in

sone ot her inplenentations of C

7) Introl-C permts synbols to up to 90 characters in |ength.

CA1

CA2

APPENDI X B
DATA TYPE CONVERSI ONS
The follow ng describes the result of all conversions, inplicit or
ot her wi se.
char to float: The conversion of a character to type float results

in the value of the character being represented in floating point
format. Characters are unsigned quantities.

char to int: Characters are converted to integers by padding zeros
on the left. 1In present versions of introl-C characters are
unsi gned.

char to long int: Characters are converted to long integers by
paddi ng zeros on the left.

char to short int: Characters are converted to short by padding
zeros on the left.

char to wunsigned int: Characters are converted to unsigned by
paddi ng zeros on the left.

char to pointer: Characters are converted to pointer by padding
zeros on the left.

float to char: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be

represented by a character. |If the value is larger than that which
can be represented by a character, then the result is the maximum
value possible for a character. |If the value is snaller than that

which can be represented by a character, the result 1is set to the
m ni mum val ue possible for a character.

float to int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the wvalue is within the range which can be

represented by a signed integer. |If the value is larger than that
which can be represented by an integer, then the result 1is the
maxi mum val ue possible for an integer. |f the value is snaller than

that which can be represented by an integer, the result is set to
the m ni mum val ue possible for an integer

float to long int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be

represented by a long integer. |If the value is larger than that
which can be represented by a long integer, then the result is the
maxi mum val ue possible for a long integer. |If the value is snaller

than that which can be represented by a long integer, the result is
set to the m ni mum val ue possible for a | ong integer

CB1

float to short int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a short integer. If the value is larger than that
which can be represented by a short integer, then the result is the
maxi mum val ue possible for a short integer. If the value is snaller
than that which can be represented by a short integer, the result is
set to the m ni mum val ue possible for a short integer

float to unsigned int: The fractional part of the float is truncated
to produce an integral value (truncation is always toward 0). This
is the resultant value if the value is within the range which can be
represented by an unsigned integer. If the value is larger than that
whi ch can be represented by an unsigned integer, then the result is
the rmaxi num val ue possible for an unsigned integer. If the value is
snmal ler than that which can be represented by an unsigned integer
the result is set to the mininum value possible for an unsigned
i nteger.

float to pointer: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a pointer. If the value is larger than that which can
be represented by a pointer, then the result is the maxi mum val ue
possible for a pointer. If the value is smaller than that which can
be represented by a pointer, the result is set to the m nimum val ue
possi bl e for a pointer.

int to char: Integers are converted to characters by truncating the
excess high order bits.

int to float: The conversion of an integer to type float results in
the value of the integer represented in a floating poi nt format.

int tolong int: Integers are converted to long integers by sign
ext ensi on.

int to short int: Integers are converted to short integers by
truncati ng any excess high order bits.

int to unsigned int: The conversion frominteger to unsigned integer
is conceptual and no actual change in the bit pattern takes pl ace.
Thus the value of a positive integer converted to unsigned integer
does not change while the value of a negative integer appears as a
| arge unsigned integer

int to pointer: The conversion frominteger to pointer is conceptua
and no actual change in the bit pattern takes pl ace.

long int to char: Long integers are converted to type character by
truncating the excess high order bits.

long int to float: The conversion of a long integer to type float
results in the value of the long integer represented in floating

CB.2

point format. There nay be sone |oss of precision for |arge val ues
because the nunmber of bits used to represent the long (31 not
including sign) is larger than the number of bits used to represent
the manti ssa of the float (24).

long int to int: Long integers are converted to type integer by
truncating any excess high order bits.

long int to short int: Long integers are converted to short integers
by truncating the excess high order bits.

long int to unsigned int: Long integers are converted to unsigned
i ntegers by truncating the excess high order bits.

long int to pointer: Long integers are converted to pointer by
truncating the excess high order bits.

short int to char: Short integers are converted to character by
truncati ng any excess high order bits.

short int to float: The conversion of a short integer to type fl oat
results in the value of the short represented in floating point
format.

short int to int: Wen short integers are converted to type integer
any excess high order bit positions in the result are filled by sign
ext endi ng the short integer

short int to long int: Wien short integers are converted to type
long integer, any excess high order bit positions in the result are
filled by sign extending the short integer

short int to unsigned int: Wen short integers are converted to type
unsi gned integer, any excess high order bit positions in the result
are filled by sign extending the short integer

short int to pointer: Wen short integers are converted to pointer
any excess high order bit positions in the result are filled by sign
ext endi ng the short integer

unsigned int to char: Unsigned integers are converted to type
character by truncating the excess high order bits.

unsigned int to float: The conversion of an unsigned integer to type
float results in the value of the unsigned integer represented in
floating point format.

unsigned int to int: The conversion from unsigned i nteger to integer
is conceptual and no actual change in the bit pattern takes pl ace.
Thus, when an unsigned integer with a value greater than the naxi mum
integer value is converted to an integer, the result appears as a
negati ve nunber.

CB3

unsigned int to long int: Unsigned integers are converted to |ong by
paddi ng zeros on the left.

unsigned int to short int: Unsigned integers are converted to type
short integers by truncating any excess high order bits.

unsigned int to pointer: The conversion fromunsigned to pointer is
conceptual and no actual change in the bit pattern takes place.

pointer to char: Pointers are converted to type character by
truncating the high order bits.

pointer to float: The conversion of a pointer to type float results
in the value of the pointer as represented in floating point format.
The value of a pointer is interpreted as an unsigned quantity.

pointer to int: The conversion frompointer to integer is conceptua
and no actual change in the bit pattern takes pl ace.

pointer to long int: Pointers are converted to type |long integer by
paddi ng the high order bits with zeros.

pointer to short int: Pointers are converted to short integer by
truncati ng any excess high order bits.

pointer to unsigned int: The conversion from pointer to unsigned
integer 1is conceptual and no actual change in the bit pattern takes
pl ace.

CB4

APPENDI X C

| NTROL- C/ 6809 COWPI LER
DATA, REG STER USAGE
AND PARAMETER PASSI NG CONVENTI ONS

DATA

The value of char data is represented in an eight bit (one byte)
menory | ocation. A char is an unsigned snmall integer that can
contain a value fromzero to 255.

Int variables are contained in two bytes (16 bits) and represent a
two's conplement value that nmay be in the range -32768 to +32767.

Al'l signed integers are represented in twd's conplenent form
Short is a synonymfor int in this inplenmentation

Unsigned (or unsigned int) variables are contained in two bytes (16
bits) and nay contain values in the range 0 to 65535.

Long (or long int) variables are contained in four bytes (32 bits)
and contain values in the range -2147483648 to 2147483647.

Floats are contained in four bytes (32 bits) and contain val ues as
defined by the IEEE standard for 32 bit floating point nunbers. (See
also the discussion on floats in the "Definition of Introl-C'
section of this manual.)

A structure has a size exactly equal to the sumof the sizes of its
parts. There are no unused spaces in structures. For exanple the
structure declaration:

struct
{
int a;
char b;
unsi gned d;
char e[2];
long f;
float g;
o

will create the followi ng nenory all ocation (assunme the byte nunbers
represent offsets fromthe beginning of structure f)

Byte Contents
0,1 int value of nenber a. (Byte O
is the high byte.)

2 Char val ue of nenber b.

3,4 Unsi gned val ue of nenber d.
5 e[0]

6 e[1]

CClI

7,8, 9, 10 Long int value of nenber f.
(Byte 7 is the high byte.)

11,12,13,14 The first, nmost significant bit of
the first byte is the sign of the
float. The next seven bits of the
first byte and the first bit of the
next byte conprise t he bi ased
exponent. The remaining 23 bits
conprise the mantissa and make up
t he remai nder of the second byte as
wel | as the next two bytes.

A union is the size of its largest menber. Al unions pack towards
the left. This neans that a char variable coexisting with an int in
a union will actually be allocated the byte representing the high
byte of the integer's val ue.

An array has the size of one of its elenments nultiplied by the given
di rension of the array. An array declaration such as:

char a[10];

defi nes a" to be a character array with ten elements and therefore
ten bytes |ong.

REG STER USAGE

The 6809 has two eight bit accunul ators (usable as a single sixteen
bit register), three general purpose index registers, a hardware
stack pointer and a programinstruction counter. These registers are
al l ocated by the Compiler as follows.

The B accunulator is used as the char accumulator for arithnetic
expressions that involve char values. The D register (A:B) is used
as the int and unsigned accunul ator. A programmer is free to destroy
these registers in a user witten assenbly |anguage function. The B
register is used to return character data froma function; the D
register is used to return int, or wunsigned values; and both the U
and D registers are wused to return long int. or float, wth U
containing the nost significant half of the nunber.

The X, Y, and U registers are used in addressing operands. The
contents of the X and U register may be destroyed by an assenbly
| anguage routine without adverse effect. The Y register nay al so be

nodi fi ed, but only if the wuser 1is not generating posi tion
i ndependent code. When generating position independent code, the
Conpiler assunmes the Y register wll in all cases contain the
address of the beginning of its external and static data area. In

such case, a program initialization routine nmust initialize the Y
regi ster before the first call to "main()".

The hardware stack pointer (SP) should be preserved through a

function. The SP points to an area of read/wite nmenory that has
several uses: (1) The stack area is used to preserve a record of the

CC2

execution history of the program so that a function always "knows"
who called and can return to the sane place; (2) the stack is used
to save the state of the processor in the event of an interrupt; (3)
the stack is wused to pass paraneters to a function: and (4) the
stack is used to allocate |local variable space for a function. These
first two functions of the stack are determ ned by the 6809 hardware
and can be pursued further, if desired, by obtaining a reference
book on the nicroprocessor. The third and fourth functions of the
st ack (paraneter passing and | ocal variable allocation) are
described in the follow ng paragraphs.

PARAVETER PASSI NG CONVENTI ONS

VWhen a function is called in this inmplenentation the second through
the |last paraneters are pushed on the stack in reverse order (I ast
par anet er first). The first parameter is loaded into the D
accunul at or. If the first paraneter is a long or float, the high
order word is loaded into the Uregister. Char values are converted
to int when passed as a paraneter. Either the junp to subroutine
(JSR) or the long branch to subroutine (LBSR) instruction is then
used to call the desired function. After the function returns, the
area in the stack used for paranmeters is freed. The return value of
the function is assumed to be in the U and D registers, where Uis
assuned to hold the nost significant 16 bits of a returned |ong or
float value while the D register holds the least significant 16
bits. Integer-sized data is returned in the Dregister. Character
data is returned in the |loworder 8 bits of the Dregister (the B
register). \When returning character type data, it is a good idea to
clear the wupper 8 bits of the D register (the A register).

A function call such as:
f(a, b, 1+2)
woul d generate the 6809 code with the foll ow ng neani ng:

push (the val ue of 1+2)

push (the val ue of variable b)

| oad (the value of wvariable a)

LBSR f

deal | ocate 4 bytes fromthe SP (total pushed
par armet er size)

Wen the function is entered, the stack frame |ooks |ike this:
St ack Contents O fset
ot her data on the stack SP+6
t he val ue of 142 SP+4
the value of variable b SP+2
SP -> return address SP+0
D = value of variable a

CC3

LOCAL DATA

If a function needs auto storage |ocations it allocates them bel ow
the return address of the stack frame descri bed above. Suppose the
function f() has the follow ng declaration

f(x,y,2)
int x,vy,z;
{
char a;
int b;

The function would expect its paraneters to be in the stack frane as
descri bed above. The function will often save paranmeter 1 (passed in
the Dregister) in the stack just wunder the return address. After
entering the function, the stack pointer would be nodified to all ow
the storage of a and b below the return address of the stack frane.
The new stack frame woul d | ook |ike this:

Stack Contents of f set
ot her data on the stack SP+11 ..
t he val ue of paraneter z SP+9
t he val ue of paraneter y SP+7
return address SP+5
t he val ue of paraneter x SP+3
variable b SP+|
SP -> variable a SP+0

Note that char variables use only one byte as auto variables. The
only time they are automatically given two bytes is when passed as
par amet ers. The function has the responsibility of "cleaning up"
after itself by removing the allocation of variables a and b from
the stack. Allocating nenory from the stack is acconplished by
subtracting the desired nunber of bytes fromthe SP and using the
area between the new SP and the old SP. Deall ocating nenory fromthe
stack is the opposite: add the number of bytes to deallocate to the
SP.

There are two inportant things to renenber about the stack pointer
The first is that it nust always point to the return address of the
caller when the function is conplete. The second is that the stack
poi nter rmust always point to an area of nenory |large enough to hold
all the auto variables of a series of functions at their deepest
nesting level, allowroomfor the paraneters and return addresses,
| eave space for any tenporary variables that nmight be used on the
stack, and allow room for saving the system state if the prograns
are to be run in an interrupt environment. In other words, the stack
is very busy so make the stack area bi g enough

CC4

I NDEX

abstract declarators 6.13
addi tion operator 6.19

addi tive operators 6.19
address operator 6.18
addressing operators 6.16
and operator, bitwise 6.21
and operator, logical 6.21
array operator 6.17

array type 6.8

array, multi-dinensional 6.8
assenbly | anguage text file 3.2
assi gnment operator 6.23
assi gnment operator, update 6.23
assi gnment operators 6.23
auto variables 6.6

backspace 6.2

bi nary operators 6.15
bitwi se and operator 6.21
bitwi se exclusive or operator 6.21
bi twi se Not operator 6.17
bitwi se or operator 6.21

bl anks 6.1

break statement 6.25
carr-iage return 6.2

case | abel statenment 6.25
cast 6.13

cast operator 6.18

Character constants 6.2
character type 6.7

comma operator 6.23

comment nesting 6.1

comrents 6.1

conpiler 4.1

conpiler error nessages 4.7
conpiler options 4.2
conpound statement 6.24
condi ti onal expression 6.22
condi ti onal operator 6.23
constant expressions 6.15
constant, floating point 6.3
constants 6.2

constants, character 6.2
constants, hexadecimal 6.2
constants, integer 6.2
constants, long integer 6.2
continue statenent 6.25
conversion, float to integral 6.14
conversion, integral to float 6.15
conversion, integral to integral 6.15
conversions 6.14
conversions, explicit 6.15
conversions, inplicit 6.14
data conventions 6.6

data declarations 6.10

decl arations 6.10

decl arations, data 6.10

decl arators, abstract 6.13
decrenment operator 6.18
default statement 6.25
#define directive 6.3
definition of Introl-C 6.1
definition, function 6.12
directive, #define 6.3
directive, #else 6.4
directive, #endif 6.4
directive, #ifdef 6.4
directive, #ifndef 6.5
directive, #include 6.5

di vision operator 6.19

do statenent 6.24

#el se directive 6.4

#endif directive 6.4

equ 5.9

equal -to operator 6.20

equal ity operators 6.20

err 5.10

error nmessages, conpiler 4.7
escape characters 6.2
exclusive or operator, bitwise 6.21
explicit conversions 6.15
export 5.10

expression statement 6.23
expression, conditional 6.22
expressions 6.13
expressions, constant 6.15
extern variables 6.5

fcb 5.10
fcc 5.11
fdb 5.11

file, assenbly |anguage text 3.2
file, relocatable object 3.2
float to integral conversion 6.14
floating point constant 6.3
floating point type 6.8

for statement 6.24

formfeed 6.2

function definition 6.12
function operator 6.16

function type 6.8

functions 6.8

goto statenent 6.26

greater-than operator 6.20
greater-than-equal operator 6.20
hexadeci mal constants 6.2
identifier length 6.1
identifiers 6.1

#ifdef directive 6.4

#i fndef directive 6.5

implicit conversions 6.14

import 5.12

#include directive 6.5

increment operator 6.17
indirection operator 6.18

+inf 6.8

nitializers 6.11

nteger constants, long 6.2
nteger type 6.7

nteger type, long 6.7

nteger type, short 6.7

nt eger type, unsigned 6.7
ntegral to float conversion 6.15
ntegral to integral conversion 6.15
keywor ds 6.1

| abel Statement 6.26

| abel statenent, case 6.25

left shift operator 6.19

| ess-than operator 6.20

| ess-than-equal operator 6.20

| exi cal conventions 6.1

lib 5.12
list 5.12
loc 5.13

| ogi cal and operator 6.21
| ogi cal not operator 6.17
| ogi cal or operator 6.21
long integer constants 6.2
long integer type 6.7

I values 6.15

macro, preprocessor 6.4
menber nane spaces 6.9
nmodul o operator 6.19

mul tidi mensional array 6.8

mul tiplication operator 6.19
mul tiplicative operators 6.19
NaN 6.8

newine 6.2

newines 6.1

nolist 5.13

not - equal operator 6.20

null statement 6.26

object file, relocatable 3.2
octal constants 6.2

offset 5.13

opcodes 5.6

operator precedence 6.16
operator, addition 6.19
operator, address 6.18
operator, array 6.17
operator, assignnent 6.23
operator, bitwise and 6.21
operator, bitw se exclusive or
operator, bitwi se Not 6.17
operator, bitwise or 6.21
operator, cast 6.18
operator, comma 6.23
operator, conditional 6.23
operator, decrenment 6.18
operator, division 6.19
operator, equal-to 6.20
operator, function 6.16
operator, greater-than 6.20

operator, greater-than-equal 6

operator, increnent 6.17
operator, indirection 6.18
operator, left shift 6.19
operator, less-than 6.20
operator, |ess-than-equal 6.20
operator, logical and 6.21
opertor, logical not 6.17
opertor, logical or 6.21
opertor, nodulo 6.19
opertor, multiplication 6.19
operator, not-equal 6.20
operator, right shift 6.19
operator, shift 6.19
operator, sizeof 6.18

operator, structure menber 6.17

6

20

operator, structure nmenber pointer

operator, subtraction 6.19
operator, unary mnus 6.18
operator, update assignment 6
operators 6.16

operators, additive 6.19
operators, addressing 6.16
operators, assignment 6.23
operators, binary 6.15
operators, equality 6.20
operators, multiplicative 6.19
operators, relational 6.20
operators, trinary 6.15
operators, unary 6.1 5. 6.17
options, conpiler 4.2

or operator, bitwise 6.21

or operator, logical 6.21
pointer type 6.9

pointers 6.9

preprocessor directives 6.3
preprocessor macro 6.4
preceoence. operator 6.16
register variables 6.5

23

21

rel ati onal operators 6.20
rel ocatabl e object file 3.2
return statement 6.25
right shift operator 6.19
rmb 5.14

scope, nmenber nanes 6.9
set 5.14

shift operator 6.19

shift operator, left 6.19
shift operator, right 6.19
short integer type 6.7
sizeof 6.13

si zeof operator 6.18
statement, break 6.25
statenment, case | abel 6-.25
stat ement, conpound 6, 24
statement, continue 6.25
statement, default 6.25
statement. do 6.24
statement, expression 6.23
statement, for 6.24
statenment, goto 6.26
statenent, |abel 6.26
statement, null 6.26
statement, return 6.25
statement, switch 6.25
statement, while 6.24
statements 6.23

static variables 6.7
storage class 6.6

storage class, typedef 6.7
strings 6.3

structure nmenber name spaces 6.9

structure nenber operator 6.17

structure nenber pointer operator 6.17

structure, type 6.9
subtraction operator 6.19
switch statement 6.75

syn 5.14

tab 6.2

Theory O Operation 3.1
trinary operators 6.15
type 6.7

type structure 6.9

type, array 6.8

type, character 6.7

type, floating point 6.8
type, function 6.8

type, integer 6.7

type, long integer 6.7
type, pointer 6.9

type, short integer 6.7
type, union 6.9

type, unsigned integer 6.7
typedef.storage class 6.7
unary mnus operator 6.18
unary operators 6.15, 6.17
tundef 6.6

underscore 6.1

union type 6.9

unsi gned integer type 6.7
updat e assi gnnent operator 6.23
vari abl es, auto 6.6
variabl es, extern 6.6
variables, register 6.6
variables, static 6.7
while statement 6.24

whi te space 6.

FC6809 | NTROL-C

STANDARD LI BRARY
REFERENCE MANUAL

(FLEX)

The contents of this manual have been carefully reviewed and are
believed to be entirely correct. However, Introl Corp. assumes no
liability for inaccuracies.

The software described in this manual is proprietary and is
furni shed under a license agreenent fromlIntrol Corp. The software
and supporting docunentation nmay be wused and/or copied only in
accordance with said |icense agreenent.

INTROL-C is a registered trademark of Introl Corp.

FLEX and Uni Fl ex are trademarks of Technical Systems Consultants, Inc.
09 is a trademark of M croware Systenms Corp.

UNI X is a tradenmark of Bell Laboratories

Introl Corp.
647 W Virginia St.
M | waukee, W 53204 USA

tel. (414) 276-2937

Copyright 1983 Introl Corp.
Al'l Rights Reserved

FC6809 STANDARD LI BRARY

This manual describes each of the standard Ilibrary routines
supported by the FC6809 Introl-C Standard Library. The FC6809
Standard Library is wusable with the Introl "fld Loader for

producing progranms that are conpatible with, and executabl e under,
the Flex operating system Note that Introl-C uses systemcall names
which may differ fromthose used by your operating system Those
system calls which perform a function which is analogous to a
recogni zed UNI X system call have been given the corresponding UN X
nane rather than the name used by the particul ar operating system
The library functions appear in al phabetical order in this-nmanual.

| MPORTANT NOTE: The mmjority of functions contained in the
Standard Library have been pre-assigned a nodule "class nunber"
of zero (0). Several "non-zero" class Standard Library nodules
are also included for wuser convenience, however, and are
identified in the Appendix at the end of this Standard Library
Manual . In general, these non-zero class nodules are alternate
forms of identically naned class zero nodules that exist in the
library, nodified to fit specific programing applications.

The following is a list of the functions included in this nanual.

FUNCTI ON DESCRI PTI ON PAGE
abs - integer absolute val ue 1.1
al | oc - allocate nenory 2.1
at of - convert string to float 3.1
at oi - convert string to integer 4.1
at ol - convert string to |long 5.1
cprep - prepare environment for C program 6.1
cstart - runtime preparation routine 7.1
ecvt - float to string conversion 8.1
execl - execute a program 9.1
exit - exit a programwith file cleanup 10.
_exit - exit a programw thout file cleanup 11
_extend - extend float 12.
fcl ose - close file 13.
fevt - float to string conversion 14.
fgets - read file into string 15.
_filespec - Build file specification 16.
_fms - Call to FLEX FMS entry point 17.
f open - open a file 18.
fprintf - formatted out put conversion 19.
fputs - wite a string to a file 20.
free - free menory 21
f scanf - formatted i nput conversion 22.
getc - get the next character froma file 23.
get char - get a character fromthe standard i nput 24.
_getchr - Call FLEX CETCHR entry point. 25
gets - read input into string 26.

PRRPRRPRRPRRRRPRRREPRRRERRRRE

ndex - find first occurrence of character 27.

i

isalpha - test for al pha character 28.
i sdigit - test for digit 29.
i sl owner - test for |ower case 30.
i sspace - test for white space 31.
i supper - test for upper case 32.
itoa - convert integer to ascii string 33.
| ongj np - non-|local goto 34.
mal | oc - allocate nenory 35.
max - return the maxi num of two val ues 36.
m n - return the mninum of two val ues 37.
nodf - return fractional part of fl oat 38.
novmem - copy a block of nmenory from one-location to another 39.
printf - formatted out put conversion 40.
put c - wite a character to a file 41.
put char - wite a character to the standard out put 42.
_putchr - Call FLEX PUTCHR entry point. 43.
puterr - wite a char to the standard error output (STDERR) 44.
put s - wite a string to standard out put 45.
reverse - reverse a string in place 46.
rew nd - reset specified file to beginning 47.
ri ndex - find last occurrence of character 48.
sbrk - allocate menory 49.
scanf - formatted i nput conversion 50.
_setext - Call FLEX SETEXT entry point 51.
setjmp - non-local goto 52.
sprintf - formatted output conversion 53.
sscanf - formatted string conversion 54.
strcat - copy string 55.
strcnp - conpare strings |exicographically 56.
strcpy - copy string 57.
strlen - return string length 58.
strncat - copy string 59.
strncnp - conpare strings |exicographically 60.
strncpy - copy string 61.
strsave - save string in menory 62.
t ol ower - convert to |ower case 63.
t oupper - convert to upper case 64.
ul div - unsigned |long integer divide 65.
ul ncd - unsigned | ong nodul o operation 66.
ul mul - unsigned long nmultiply 67.
_unext - unextend fl oat 68.
unget c - push character back on input stream 69.
unget char - push character back on standard input stream 70.
unl i nk - delete file 71.

0.2

PR RPRRRPRRPRPRRPRRPRRPRRPRRPRRRRRRRRRRRRRRRRRPRRPRRRRRRRRRRRRRR

NAME
abs - integer absolute val ue

SYNOPSI S
i nt abs(i)
i nt i;

DESCRI PTI ON
abs returns the absolute value of its integer operand.

DI AGNOSTI CS
SEE ALSO

NOTES

NAME
alloc - allocate nenory

SYNOPSI S
char *al | oc(si ze)
int si ze;
DESCRI PTI ON
alloc wll attenpt to allocate a block of menory whose size is

given by the argunment. If it is successful it returns a pointer
to that nenory otherwise it returns NULL.

DI AGNOSTI CS
Returns NULL if the menory could not be all ocated.
SEE ALSO
free(), sbrk()
NOTES
Alloc is an obsolete name for malloc(). It sinply calls

mal | oc() and returns.

NANVE

atof - convert string to float

SYNOPSI S
fl oat atof (cptr)
char *cptr;
DESCRI PTI ON

The atof function converts a string into a float which is then
used as the return value of the function. The string should be
null termnated although atof wll stop reading the string as
soon as an illegal <character is reached. After ignoring
precedi ng bl anks the atof routine wll convert as nmuch of the
string as conforns to normal floating point constant format to
a floating point nunber. It will stop at the first character
which is inconsistent with that format. |If no floating point
constant is found a O is returned.

A floating point constant consists of an integer part, a
deci mal point, a fractional part, and an exponential part. The
integer and fractional parts may each consist of a string of
one or nore digits. The exponential part consists of an 'e' or
"E', followed by an optionally signed integer exponent. Either
the integer or the fractional part (but not both) nmay be
m ssing; either the decinmal point or the exponential part (but
not both) may be m ssing.

DI AGNOSTI CS

SEE ALSO

atoi (), atol ()

NOTES

Presently it is pernmitted to have spaces between the 'e' or 'FE
and the first character of the integer representing the
exponent .

NANVE

atoi - convert string to integer
SYNOPSI S
i nt atoi (ptr)
char *ptr;
DESCRI PTI ON
Atoi's argunent is a pointer to char which is assunmed to point
to a null termnated string which cont ai ns t he ASCI

representation of some integer nunber. The atoi function
converts a string into an int which is the return value. The
string should be null ternminated although atoi wll stop
reading the string as soon as an illegal character is reached

After ignoring preceding blanks the atoi routine will convert
as nuch of the string as conforms to normal integer constant
format to an integer nunber. It wll stop at the first
character which is inconsistent with that format. If no integer
constant is found a O is returned.

The integer constant format consists of an optional sign,
followed by one or nore digits. There should be no spaces
i nterspersed within the nunber.

DI AGNOSTI CS

SEE ALSO
atof (), atol ()

NOTES

NANVE

atol - convert string to long,
SYNOPSI S

| ong atol (cptr)

char *cptr;
DESCRI PTI ON

The atol function converts a string into a long which is the
return value. The string should be null term nated although
atol will stop reading the string as soon as an illegal
character is reached. After ignoring preceding blanks the atol
routine will convert as nuch of the string as confornms to
normal long integer constant format to a long integer. It wll
stop at the first character which is inconsistent wth that
format. If no long integer constant is found a 0 is returned.

The long integer constant format consists of an optional sign,
foll owed by one or nore digits. There should be no spaces
i nterspersed within the nunber.

DI AGNOSTI CS

SEE ALSO

atof (), atoi()

NOTES

NAVE
cprep - prepare environment for C program

SYNOPSI S
i nt cprep(argc, argv, eext)
int argc;
char **argv;
char * eext ;

DESCRI PTI ON
Cprep first prepares the environment for the user C program and
then call s "main", the wusual entry-point to a user program
Cprep is wusually referenced only from "cstart". The user
program is not expected to make any explicit reference to this
routine.

DI AGNOSTI CS

SEE ALSO
cstart

NOTES

The result of an explicit reference to cprep is undefined.

NAME
cstart - runtime preparation routine

SYNCPSI S

DESCRI PTI ON

Cstart is a runtine preparation routine which is normally the
first routine executed by an Introl-C program Its only
function is to set up the environnent enough to allow the
function "cprep" to be called. Cprep is a function which
produces the runtime environnment which is-expected by the user
program Cstart is included automatically by the linker. It is
NOT expected that a wuser program wll reference cstart
explicitly via a function call

DI AGNOSTI CS

SEE ALSO
cprep()

NOTES
The result of an explicit reference to cstart is undefined.

NANVE

ecvt - float to string conversion

SYNOPSI S
char *ecvt (arg, ndi gits, decpt, sign)
fl oat arg;
i nt ndigits;
i nt *decpt, *sign;
DESCRI PTI ON

This is a formatting routine wused by printf for formatting
floating point nunbers in the e format.

Ecvt returns a pointer to a string which contains asci
characters representing a floating point nunber. The first
argunent is converted to a string whose length is indicated by
the second argunent. The third argunent points to a variable in
which the routine will wite the |ocation of the deciml point
relative to the start of the string (negative nunbers indicate
that the decimal point is to the left of the first character of
the string). The variable pointed to by the fourth argunment is
set nonzero if the float is negative otherwise it is set to
zero.

The string is witten in a static data area local to ecvt and
is overwitten with the next call

If the argunent passed to ecvt is a legal floating point nunber
the string will consist of a series of ascii digits termnated
by a null. If the argument is out of the legal range for floats
(as per the | EEE standard) the string will contain "NaN' (Not a
Nunmber). |If the argunment is either greater than the nmaxi num or
| ess than the mninumallowed for a float the characters "inf"
(infinity) will be placed in the string (the fourth argunent is
set to indicate positive or negative infinity). The string
itself contains neither a mnus sign nor a decinmal point nor a
base ten exponent.

DI AGNOSTI CS

SEE ALSO
fevt(), itoa()

NOTES

NANVE

execl - execute a program
SYNOPSI S
int execl (cnd, arg0, argl,...,0)

char cnmd, *argo, *argl,

DESCRI PTI ON

Execl causes the present program to cease execution and a new
programto execute. The nane of the file to be executed nust be
contained in a string pointed to by the first argunent. The
additional argunents are assumed to be pointers to nul
termi nated strings. These pointers wll be passed to the
program to be executed if they appeared as paraneters on a
command call line. The last argument MJUST be a zero. The new
process is given the argunents which follow the first argument
in the execl call. The second argunent of the execl call is the
FIRST argunent passed to the programto be executed (by
convention referred to as argv(0). The last argument in the
execl call nust always be a zero.

DI AGNOSTI CS

This function NEVER returns

SEE ALSO

NOTES

The sumtotal of |engths of the argument strings (including a
space to be placed between each argunent) nust not exceed the
length of a FLEX Iine buffer, which is 128 bytes | ong.

NAME
exit - exit a programw th file cleanup

SYNOPSI S
i nt exit(stat)
int st at ;
DESCRI PTI ON

Exit aborts a C programand returns to the operating system
The status value is returned to the operating system Exit also
flushes any open file buffers and closes all open files before
exi ting.

DI AGNOSTI CS

SEE ALSO
_exit()

NOTES

10.1

NAME
_exit - exit a programw thout file cleanup

SYNOPSI S
i nt _exit(stat)
i nt st at ;
DESCRI PTI ON

_exit aborts a C programand returns to the operating system
The status value is returned to the operating system The _exit
routi ne does not explicitly flush the file buffers.

DI AGNOSTI CS

SEE ALSO
exit()

NOTES

11.1

NANVE
_extend - extend float

SYNOPSI S
i nt _extend(f, ef)
fl oat f:
struct extflt
{
char sign;
int exp;
| ong manti ssa
} o ref;
DESCRI PTI ON

_extend extends a floating point nunber (its first argument)

and stores the result in the structure pointed to by the second
argunent. The first element of the structure contains the sign

bit of the nunber, the second element contains the unbiased

exponent, and the thirs el ement contains the nantissa.

DI AGNOSTI CS

SEE ALSO
_unext ()

NOTES

12.1

NANVE
fclose - close file

SYNOPSI S
#include "stdio.h"
i nt fclose(fp)
FILE *fp;

DESCRI PTI ON
Fclose wll close the file indicated by its argunent. The
argunent rnust be a file pointer which was previously returned
from an fopen wunless it is STDIN, STDOUT, or STDERR I f the
file has been opened for witing, fclose will automatically
flush the remaining contents of the buffer.

DI AGNCSTI CS
fclose will return ERRORif the file could not be closed. The
external variable "errno" will contain the error code which was
returned by the operating system.

SEE ALSO
fgets(), fopen(), fprintf(), fputs(), fscanf(), getc()

NOTES

13.1

NANVE

fcvt - float to string conversion

SYNCPSI S

char *fcvt(arg, ndigits, decpt, sign)
float arg;

i nt ndigits;
int *decpt, *si gn

DESCRI PTI ON
This is a formatting routine used by printf for formatting
floating point nunbers in the f format. It is simlar to the
"ecvt" routine except that the correct digit will be rounded as

demanded by Fortran F-format for the nunber of digits indicated
by the second argunent

Fcvt returns a pointer to a string which contains asci
characters representing a floating point nunmber. The first
argunent is converted to a string whose length is indicated by
the second argunment. The third argunent points to a variable in
which the routine will wite the |ocation of the deciml point
relative to the start of the string (negative nunbers indicate
that the decimal point is to the left of the first character of
the string). The variable pointed to by the fourth argunment is
set nonzero if the float is negative; otherwise it is set to
zero.

The string is witten in a static data area local to fcvt and
is overwitten with the next call

If the argunent passed to fcvt is a legal floating point nunber
the string will consist of a series of ascii digits term nated

by a null. If the argument is out of the legal range for floats
(as per the |EEE standard) the string will contain "NaN (Not a
Nunber). If the argument is either greater than the maxi mum or

Il ess than the minimumallowed for a float the characters "inf"
(infinity) will be placed in the string (the fourth argunment is
set to indicate positive or negative infinity). The string
itself contains neither a mnus sign nor a decinmal point nor a
base ten exponent.

DI AGNOSTI CS

SEE ALSO

NOTES

ecvt(), itoa()

14.1

NAME
fgets - read file into string

SYNOPSI S
#i ncl ude "stdio. h"
i nt fgets (s,n,fp)
char *S;
int n;
FI LE *fp;

DESCRI PTI ON
Fgets will read aline of upto n characters fromthe file
pointed to by its third argument into the area pointed to by
its first argument. Its third argunent nust be a file pointer
previously returned by an fopen call. Fgets returns a pointer

to the start of the line read or NULL if for some reason no
line could be read. The function reads the nunber of characters
indicated by its second argunment or until an end of line is
encountered, whichever cones first. The trailing newwine IS
included in the line read.

DI AGNOSTI CS
fgets will return NULL if the file could not be read from this
is usually interpreted as an End O File

SEE ALSO
fclose(), fflush(), fopen(), fprintf(), fputs(), fscanf(),

getc(), gets()

NOTES
If thereis atrailing newline character read fromthe file
fgets will include it in the string whereas gets will not.

15.1

NAME
_filespec - Build file specification

SYNOPSI S
*incl ude "stdio.h"
i nt _filespec(n,fp,ext)
char *n;
FI LE *fp;
char ext ;
DESCRI PTI ON
The _filespec function builds a file specification in the fcp

pointed to by the second argunent. The first argument points to
a file nane string that may contain a drive specifier and an
extension. If no drive is given in the name, the system working

disk is assuned. If no extension is given in the nane,

t he

value of the third argument is used in a call to the FLEX
routine SETEXT to set the default extension. (see "The FLEX

Advanced Progranmers Quide" for nore details on the
par ameter.)

DI AGNOSTI CS

ext

Returns ERROR if a valid file specification could not be nade

SEE ALSO

NOTES

This routine is used internally by sone of the file routines

and is not guaranteed to be supported in the future.

16.1

NAME
fms - Call to FLEX FMs entry point

SYNOPSI S
#i ncl ude "stdio. h"
i nt _fs(fp,c)
FI LE *fp;
char C

DESCRI PTI ON

This is a short assenbly |language routine that allows a C
program to call the FLEX FMS entry point. The desired function
should be placed in fp->f.function (see the flex.h header
file). The value of the second paraneter is placed in the A
accurul ator before the call to the FM5 entry point. On return,
fms returns an integer representing the value of the A
Accunul at or or ERROR

DI AGNOSTI CS
Returns ERROR if FLEX detected an error in the FMS call.

SEE ALSO
NOTES

This routine is used internally by sone of the file routines
and is not guaranteed to be supported in the future.

17.1

NAME
fopen - open a file

SYNOPSI S
#i ncl ude "stdio.h"
FI LE *f open(namne, node)
char *nane, *node

DESCRI PTI ON
Fopen wll open the file whose nane is pointed to by its first
argunent with the attributes indicated in the string pointed to
by its second argunent. It returns a value of type pointer to

FI LE which nmust be used as an argunent on subsequent references
to the file.

The options with which the file is to be opened are specified
as ASCI| characters in the node string (whose pointer is passed
as the second paraneter). One of the characters in this string
indicates the node for which the file wll be opened. The
appropri ate nodes are

r - read: File is opened for read access
w- wite: File is opened for wite access

If neither of these characters appears in the string the file
is opened for read access. The result of placing nore than one
of these characters in the string is undefined.

In addition to one of the preceding characters a b may appear
in the string. The 'b' option indicates that the file is a
binary file while the absence of a 'b' indicates that the file
shoul d be opened as a text file.

DI AGNOSTI CS
Fopen will return ERROR if the file could not be opened and the
external variable "errno" will contain any error code returned
by the system

SEE ALSO
fclose(), fgets(), fprintf(), fputs(), fscanf (), getc()

NOTES
The current version of fopen returns ERROR when it fails to
open a file rather than the nore comon return value of NULL.

18.1

NANVE

fprintf - formatted output conversion

SYNOPSI S
#i ncl ude "stdio.h"
i nt fprintf(streamcontrol [,arqg])

FI LE *stream
char *control ;

DESCRI PTI ON

Fprintf is nearly identical to printf except that here the
output file specificationis explicitly given as the first
ar gunent . Al output is sent to the file pointed to by the
first argument. The parameters to fprintf consist of pointer
to FILE, followed by a pointer to a null termnated string

followed by zero or nore argunents. fprintf formats and wites
the argunments following the control string using the contro

string to direct formatting and conversion. The control string
may contain normal characters (which are sinply copied to the
output file) and conversion specifications which control the
witing of the argunents. Each conversion provides information
used to format its correspondi ng argunment follow ng the contro

string. Conversi on specifications begin with a percent
character (9%, perhaps followed by sonme options and term nated
by a conversion character. All the options are, of course

optional but those that are included nust appear in the
specified order. The |l egal options (in the order they nust
appear) are as foll ows:

Dash (-): indicates that if the nunber to be witten is shorter
than the specified field length that it should be |eft
justified. If this option is omtted the number will be
right justified.

Zero (0): indicates that if the nunber to be witten is shorter
than the specified field length that it should be padded
with zeros to fill the field length. |If this optionis
omtted the field will be padded with bl anks

Digit string: indicates the minimum field wi dth. The argunent
will be witten in a field at least this wide. This field
may be replaced with a star (*) which will cause the field

width to be taken fromthe next correspondi ng argument (of
type integer) in the argunent |ist.

Period (.): separates the field width from the next digit
string.

Digit string: indicates the precision. For a float the
preci sion is the nunber of digits to be witten to the
right of the decimal point. For a string the precision is
t he maxi nrum nunber of characters which wll be witten.
This field my be replaced with a star (*) which will
cause the field width to be taken from the next

19.1

correspondi ng argunment (assuned

argument |i st

to be an integer) in the

Long (I): (letter ell) indicates that the corresponding
argunent is to be witten as a long rather than an int.

The valid conversion characters and their neanings are as

foll ows:

d The argunent is assumed to be of

in deci nal notation.

o] The argunent is witten in octal

type int and is witten

(wi thout | eading 0).

X Argunent is witten in hexadeci mal (w thout |eading Ox).

u The argunent is assunmed to be
deci nal notati on.

unsigned and witten in

c The argunent is witten as a character.

s The argunment is assuned to

be a pointer to a null

termnated string. Characters are copied fromthe control

string to the output string

until a null character is
reached or until the nunber of

characters given by the

precision are copied. The termnating null is not copied.

e The argunent is assuned to be a float and witten out in a

deci mal not ati on of

t he foll owi ng form

[-d.dddddde[+|-]dd That is a negative sign if the nunber
is negative, a single digit, followed by a decimal point,
followed by several digits, followed by an 'e', followed
by a sign, followed by two digits.

f The argunent is assuned to be a

float and witten out in a

decimal notation of the following form [-]ddd.dddd where
the length of the string of digits follow ng the decinal

point is given by the precision.
g Prints in either e or f format;

| f a character which is nei t her
character is found while scanning
the character followi ng the percent
and no conversion specification is

percent sign one wites it twi ce(%4.

DI AGNOSTI CS
Fprintf returns ERROR if it fails.

SEE ALSO
printf(),sprintf()

19.2

whi chever is shorter.

an option nor a conversion
a conversion specification
sign (% is simly witten
assuned. Thus to wite a

NAME
fputs - wite a string to a file

SYNOPSI S
#include "stdio.h"
i nt fputs(s,fp)
char *S
FI LE *fp;
DESCRI PTI ON

Fputs copies the string pointed to by the first argument to the
file indicated by the second argunent. The second argunent
of type pointer to FILE and shoul d have been returned by a cal
to fopen unless it is STDOUT or STDERR

DI AGNOSTI CS
Returns ERROR if an error occurred while attenpting to wite
the string.
SEE al so
puts()
NOTES

20.1

NANVE

free - free nenory

SYNOPSI S
char *free(bl ock)
char *bl ock;

DESCRI PTI ON
Free wll attenpt to free a block of nmenory indicated by its
ar gunent . The only valid argument for free is a pointer
previously returned by an alloc call. This routine should only

be used to free a bl ock that has been allocated via alloc. The
result of freeing the sane block of nenory nore than once or
attenpting to use, as an argument, a pointer which was not
returned by an alloc call is undefined (bad things happen).

DI AGNOSTI CS

SEE ALSO

al loc(), sbrk()

NOTES

21.1

NANVE

fscanf - formatted input conversion

SYNOPSI S
#i ncl ude "stdio.h"
i nt fscanf(file,control [,pointerl]...)
FI LE *file,;
char *control
DESCRI PTI ON

Fscanf is nearly identical to scanf except that the input file
specification is explicitly stated; the input is taken fromthe
file pointed to by the first argument. The paraneters to fscanf
consist of a pointer to file, followed by a pointer to a nul
termnated string (the control string), followed by zero or
nor e argunents of type pointer. Fscanf reads groups of
characters from the input file pointed to by the first
argunment, interprets themaccording to the control string, and
wites the results into the argunments pointed to by their
correspondi ng argunment pointers. The control string may contain
bl anks, tabs, and new i nes which match optional white space in
the input; it may contain ordinary characters which nust match
the input string exactly character per character; and it may
contain conversi on specifications used to control the
interpretation of t he i nput stream Each conversi on
specification provides information used to translate a segnent
of the input streaminto a value which may then be placed into
an argunment pointed to by its corresponding pointer in the
argument |ist.

Conver si on specifications begin with a percent character
per haps fol | owed by some options, and termnated by a
conversion character. All the options are, of course, optiona
but those that are included nmust appear in the specified order.
The legal options (in the order they nust appear) are:

Star (*): indicates that this conversion specification has no
corresponding pointer in the ar gunent list. Thi s
effectively skips a value in the input stream

Digit string: indicates the maxinumfield w dth; the naxinmm
nunber of characters which this conversion specification
will cause to be read fromthe input stream

Long (1): (letter ell) indicates that the correspondi ng pointer
is pointing to a long rather than an int. This has no
ef fect when preceding an e or f.

The wvalid conversion characters and their neanings are as
fol | ows:

d A decimal integer is expected in the input string. |Its
correspondi ng pointer is assumed to be of type *int.

22.1

0 An octal integer is expected in the input string. Its
correspondi ng pointer is assumed to be of type *int.

X A hexadeci mal integer is expected in the input string. Its
correspondi ng pointer is assunmed to be of type lint.

h A decimal integer is expected in the input string. |Its
correspondi ng pointer is assumed to be of type short.

u An unsigned decinmal integer is expected in the input
string. Its corresponding pointer is assumed to be of type
*unsi gned

c The very next character is read fromthe input string
(even if it's a blank). Its corresponding pointer is
assuned to be of type char.

s A string is expect ed in the input string. Its
corresponding pointer is assuned to be of type *char. It
should point to a space |large enough to hold the input
string plus an added null. Characters are read, starting
with the next nonblank character, until the nunber of
characters given in the precision is reached or until a
bl ank, tab, or newine is reached

e (sane as f)

f A floating point nunber is expected in the input string
Its corresponding pointer is assumed to be of type *float.

DI AGNOSTI CS
The return value of this function is the nunber of paraneters
that were matched (read in fromthe input line) or EOF (-1).

SEE ALSO
scanf (), sscanf()

NOTES
Exactly one line of input 1is consumed for each call to fscanf.
Thus fscanf will not fetch a new line even though there are
still conversion specifications left to process nor wll it
save any input left fromthe preceding |line for the next cal
to fscanf

A hexadeci mal nunber may not be preceded by a Ox.

Any character wthin a conversion specifier whichis not a
| egal conversion specifier option or conversion character will
be ignored along with the preceding percent sign and any
characters inbetween. Thus there is no way to match a '% on
the input Iine.

22.2

NAME
getc - get the next character froma file

SYNOPSI S
#i ncl ude "stdio. h"
i nt getc(fp)
FI LE fp;

DESCRI PTI ON
Cetc returns the next character fromthe file indicated by its
argunent . Its argument is of type pointer to FILE and should
have been previously returned froman fopen call unless it is
STDI N

DI AGNOSTI CS
CGetc returns ECF (-1) upon reading end of file or on error.

SEE ALSO
get char ()

NOTES

Notice the return value of getc is an integer not a character.
This is so that getc can return ECF (-1) on end of file

23.1

NAME
getchar - get a character fromthe standard i nput

SYNOPSI S
i nt get char ()
DESCRI PTI ON
Cetchar is identical to getc(stdin). It returns the next

character fromthe standard i nput.

DI AGNOSTI CS
Cetchar returns ECF (-1) upon reading end of file or on error
SEE ALSO
getc()
NOTES
Notice the return value of getchar is an integer not a
character. This is so that getchar can return an ECF (-1) on

end of file.

24.1

NAME
_getchr - Call FLEX GETCHR entry point.

SYNOPSI S
#i ncl ude "stdio. h"
i nt _getchr ()
DESCRI PTI ON

This function returns the value obtained by a call to the FLEX
entry point GETCHR (get console character).

DI AGNOSTI CS
SEE ALSO
NOTES

This routine is used internally by some of the file routines
and is not guaranteed to be supported in the future.

25.1

NANVE

gets - read input into string

SYNOPSI S
i nt get s(s)
char *S;

DESCRI PTI ON
Cets will read aline fromthe standard input (STDIN) into
the area pointed to by its argunent. Gets returns a pointer
to the start of the line read, or NULL if for sone reason no
line could be read. The function reads until an end of line

is encountered. The trailing newine is NOT included in the
line read (conpare this with fgets(s,n,stdin)).

DI AGNOSTI CS

Gets will return NULL on end of file and error.,

SEE ALSO

Fcl ose(), fflush(), fgets(), fopen(), fprintf(), fputs(),
fscanf (), getc().

NOTES

Gets will not include any trailing newline character in the
string whereas fgets wll.

26.1

NANVE
index - find first occurrence of character

SYNOPSI S
i nt i ndex(s, c¢)
char *s;
char c;
DESCRI PTI ON

I ndex searches the string whose pointer is passed as its first
argunent and returns a pointer to the first occurrence of the
character specified by the second argunent. A zero is returned
if the character does not appear in the string

DI AGNOSTI CS

SEE ALSO
rindex()

NOTES

27.1

NAME
i sal pha - test for al pha character

SYNOPSI S
i nt i sal pha(ch)
char ch;

DESCRI PTI ON

Returns true (non zero) if its argunent is an al pha character
(a through z or A through Z); otherwi se returns false (zero).

DI AGNOSTI CS

SEE ALSO
isdigit(), islower(), isspace(), isupper()

NOTES

28.1

NAME
isdigit - test for digit

SYNOPSI S
i nt i sdigit(ch)
char ch;

DESCRI PTI ON

Returns true (non zero) if its argunment is a digit (0 through
9); otherwi se returns false (zero)

DI AGNOSTI CS

SEE ALSO
i sal pha(), islower(), isspace(), isupper()

NOTES

29.1

NANVE
islower - test for |ower case

SYNOPSI S
i nt i sl ower (ch)
char ch;

DESCRI PTI ON

Returns true (non zero) if its argunent is a |ower case al pha
character (a through z); otherwi se returns false (zero).

DI AGNOSTI CS

SEE ALSO
i sal pha(), isdigit(), isspace(), isupper()

NOTES

30.1

NAME
i sspace - test for white space

SYNOPSI S
i nt i sspace(ch)
char ch;

DESCRI PTI ON

Returns true (non zero) if its argunent is a space, tab, or
new i ne character; otherw se returns false (zero).

DI AGNOSTI CS

SEE ALSO
i sal pha(), isdigit(), islower(), isupper()

NOTES

31.1

NAME
i supper - test for upper case

SYNOPSI S
i nt i supper (ch)
char ch;

DESCRI PTI ON

Returns true (non zero) if its argunment is an upper case al pha
character (A through Z); otherwi se returns false (zero).

DI AGNOSTI CS

SEE ALSO
i sal pha(), isdigit(), islower(), isspace()

NOTES

32.1

NANVE

itoa - convert integer to ascii string
SYNOPSI S
i nt itoa(n,s)
int n;
char *S;
DESCRI PTI ON
Itoa converts its first argunent into a null term nated asci
string which is stored at the |location pointed to by its second
argunent . If the integer is negative the string wll be

preceded by a minus sign. The second argunent should point to
an area |arge enough to contain the resultant string which may
contain a sign, up to 5 digits, and a NULL term nation
character.

DI AGNOSTI CS

SEE ALSO

fevt(), ecvt()

NOTES

33.1

NANVE

| ongjmp - non-local goto

SYNOPSI S
#i ncl ude "stdio.h"
i nt | ongj mp(envp, n)
struct jnp_buf *envp;
i nt n;

DESCRI PTI ON

Longj np works in conjunction with setjnp to provide the ability
to junmp outside of a function. Conpare this to a normal goto
for which the destination nust be in the same function as the
goto statenent. Setjnp is wused to nmark a location as a
destination (that is save a copy of the current environnent)
for later use by the longjnp routine. The argunment to setjnp is
a pointer to structure which will hold the current environment.
A pointer to this structure is wused as an argunment to | ongjnp.
Longjnp sinply restores the environnent which was saved by the
setjnp call. The effect is that execution continues at the
|l ocation where the environment was saved (inside the setjnp
call). The appearance is that of a return from setjnp.

To mark a location one nekes a call to setjnp. This will
initialize the contents of the structure whose pointer was
passed as an argunent. From this call, setjmp will return the

value 0. Later, when control is returned here froma | ongjnp,
the return value w Il be decided by the second argument of the
| ongjnp call.

Now a junmp can be made to this location by making a call to
longjnp, wusing a pointer to the same structure that was
initialized by setjnp as the first argunent and an integer as
the second argunent. The second argunent, will be used as the
return value when control is transferred to the setjnp
envi r onment

The destination of a longjunp nmust be in a function which has
not itself returned inbetween the call to setjnp and the cal
to |ongjnp. That is, the destination of a |[ongjnp nmust be
within a currently active function

DI AGNOSTI CS

SEE ALSO

NOTES

34.1

NAME
mal | oc al | ocate nmenory

SYNOPSI S
char *mal | oc(si ze)
i nt si ze;
DESCRI PTI ON
malloc will attenpt to allocate a block of menory whose size is
given by the argunment. If it is successful it returns a pointer

to that nenory, otherwise it returns NULL.

DI AGNOSTI CS
Returns NULL if the menory could not be all ocated.

SEE ALSO
free(), sbrk()

NOTES

35.1

NANVE
max - return the maxi nrum of two val ues

SYNOPSI S
i nt max(a, b)
int a, b;

DESCRI PTI ON
Max returns the greater of its two argunents.

DI AGNOSTI CS

SEE ALSO
m n()

NOTES

36.1

NANVE
mn - return the mni nrumof two val ues

SYNOPSI S
i nt m n(a, b)
int a, b;

DESCRI PTI ON
Mn returns the lesser of its two argunents.

DI AGNOSTI CS

SEE ALSO
max ()

NOTES

37.1

NAME
nmodf - return fractional part of float

SYNOPSI S
fl oat modf (fp, fint)
fl oat fp;

fl oat *fint;

DESCRI PTI ON
Modf takes a floating point nunber as its first argument and
returns its fractional part. Its nonfractional part is witten
to the location pointed to by the second argunent.
This routine is used by ecvt and fcvt.

DI AGNCSTI CS

SEE ALSO

NOTES

38.1

NANVE

nmovnmem - copy a block of nmenory fromone |ocation to another

SYNOPSI S
i nt movirem (fromto, | ength)
char *from *to;
unsi gned | engt h;

DESCRI PTI ON

Moviem copies the nunber of bytes given by the third argunent
fromthe location pointed to by first argument to the | ocation
pointed to by the second argument. The new copy wll exactly
reflect the original as it existed before the call even if the
two bl ocks of nmenory overlap (in that case, of course, the
original will be partially overwitten).

DI AGNOSTI CS

SEE ALSO

NOTES

39.1

NANVE

printf - formatted output conversion

SYNOPSI S
i nt printf(control [,arg]...)
char *control

DESCRI PTI ON

Printf is nearly identical to fprintf excect that there is no
output file specification explicitly stated; the result is
witten to stdout. The paraneters to printf consist of a
pointer to a null termnated string followed by zero or nore
argunent s. Printf formats and wites the arguments follow ng
t he control string using the control string to direct
formatting and conversion. The control string may contain
normal characters (which are sinply copied to the output file)
and conversion specifications which control the witing of the

argument s. Each conversion specification provides information
used to format its correspondi ng argunment follow ng the contro
string. Conversion specifications begin with a percent
character (9%, perhaps followed by sonme options and term nated
by a conversion character. Al the options are, of course
optional but those that are included nust appear in the
specified order. The |l egal options (in the order they nust

appear) are as foll ows:

Dash (-): indicates that if the nunber to be witten is shorter
than the specified field length, it should be Ileft
justified. if this option is omtted the nunber will be
right justified.

Zero (0): indicates that if the nunmber to be witten is shorter
than the specified field length, it should be padded with
zeros to fill the field length. |If this option is onmtted
the field will be padded with bl anks

Digit string: indicates the mininumfield width. The argunent
will be witten in a field at least this wide. This field
may be replaced with a star (*) which will cause the field
width to be taken from the next correspondi ng argunent
(assunmed to be an integer) in the argunent |ist.

Period (.): separates the field width from the next digit
string.

Digit string: indicates the precision. For a float the
precision is the nunber of digits to be witten to the
right of the decimal point. For a string the precision is

t he maxi mum nunber of characters which will be witten.
This field may be replaced with a star (*) which will
cause t he field width to be taken fromthe next

corresponding argunment (assumed to be an integer) in the
argunment |ist.

40.1

Long (I): (letter ell) indicates that the corresponding
argunment is to be witten as a long rather than an int.

The valid conversion characters and their neanings are as
fol | ows:

d The argument is assunmed to be of type int and is witten
in deci mal notation

o] The argunent is witten in octal (w thout |eading 0).
X Argurment is witten in hexadecimal (w thout |eading Ox).

u The argunment is assuned to be wunsigned and witten in
deci nal notati on.

c The argunent is witten as a character.

s The argunment is assumed to be a pointer to a nul
termnated string. Characters are copied fromthe contro

string to the output string wuntil a null character is
reached or until the nunber of characters given by the
precision are copied. The termnating null is not copied

e The argunent is assunmed to be a float and witten out in a
deci mal not ation of t he foll owi ng form
[-]1d.dddddde[+| -]dd That is a negative sign if the nunber
is negative, a single digit, followed by a decinmal point,
followed by several digits, followed by an 'e', followed
by a sign, followed by two digits.

f The argunent is assunmed to be a float and witten out in a
decimal notation of the following form [-]ddd.dddd where
the length of the string of digits follow ng the decinal
point is given by the precision

g Prints in either e or f format; whichever is shorter.

| f a character which is neither an option nor a conversion
character is found while scanning a conversion specification
the <character following the percent sign (% is sinmply witten
and no conversion specification is assumed. Thus to print out a
percent sign one wites it twice (%9. A space is NOT a |lega
opti on.

DI AGNOSTI CS

Printf returns ERRORIif it fails

SEE ALSO

NOTES

fprintf(), sprintf()

40. 2

NAME
putc - wite a character to a file

SYNOPSI S
#include "stdio.h"
i nt putc(c, fp)
char c;
FI LE *fp;
DESCRI PTI ON

Putc sends the <character given as its first argument to the
file whose file pointer is given as its second argunment. The
file pointer nmust have been previously returned froman fopen
call unless it is STDOUT or STDERR

DI AGNOSTI CS
Putc returns ERROR (-1) if an error occurs during the wite
process.

SEE ALSO

NOTES

41.1

NAME
put char

SYNOPSI S
i nt
char
DESCRI PTI ON

Put char
call of

DI AGNCSTI CS
Put char

process.

SEE ALSO
put c()

NOTES

- wite

put char (c)
C

sends the character given as its argunment to STDOUT
the form putchar(c)

returns ERROR (-1)

a

character

42.

1

to

is identica

t he st andar d

to putc(c, stdout).

out put

A

if an error occurs during the wite

NAME
putchr - Call FLEX PUTCHR entry point.

SYNOPSI S
#i ncl ude "Istdio. h"
i nt _putchr(c)
char c;
DESCRI PTI ON

This function perforns a call to the FLEX entry point PUTCHR to
perform consol e out put.

DI AGNOSTI CS
SEE ALSO
NOTES

This routine is used internally by sone of the file routines
and is not guaranteed to be supported in the future.

43.1

NAME
puterr - wite a char to the standard error output (STDERR)

SYNOPSI S
i nt puterr(c)
char c;

DESCRI PTI ON

Puterr sends the character given as its argunment to STDERR A
call of the formputerr(c) is identical to putc(c, stderr).

DI AGNOSTI CS
Puterr returns ERROR (-1) if an error occurs during the wite
process.

SEE ALSO

NOTES
STDERR is al ways directed to the terninal.

NAME
puts - wite a string to standard out put

SYNOPSI S
i nt put s(s)
char *s:
DESCRI PTI ON

Puts copies the string pointed to by the argunent to the
standard output. The effect is the sane as fputs(s, stdout).

DI AGNOSTI CS
Returns ERROR if an error occurred while attenpting to wite
the string.

SEE ALSO
fputs()

NOTES

Does NOT append a newine (contrary to sone inplenentations).

45.1

NAME
reverse - reverse a string in place

SYNOPSI S
i nt reverse(s)
char *s;

DESCRI PTI ON
Reverses the order of the elenents of a string pointed to by
the argunent. If the string the argument pointed to was
"abcdef" before the call, it would be "fedcbha" after the call

DI AGNOSTI CS

SEE ALSO

NOTES

46. 1

NAME
rewind - reset specified file to begi nning

SYNOPSI S

#i ncl ude "stdio. h"

i nt rewi nd(fp)

FI LE *fp;
DESCRI PTI ON

Rewi nd resets the file back to the begi nning.
DI AGNOSTI CS

Returns ERROR for inproper file specification.
SEE ALSO
NOTES

47.1

NANVE
rindex - find | ast occurrence of character

SYNOPSI S
i nt ri ndex(s, c)
char *S;
char c;

DESCRI PTI ON

Ri ndex searches the string whose pointer is passed as its first
argunent and returns a pointer to the |ast occurrence of the
character specified by the second argunment. A zero is returned
if the character does not appear in the string

DI AGNOSTI CS

SEE ALSO
i ndex()

NOTES

48. 1

NANVE

sbrk - allocate nmenory

SYNOPSI S
char *shrk(size)
int si ze;
DESCRI PTI ON
Sbrk will attenpt to allocate a block of nenory whose size is

given by the argunment. If it is successful it returns a pointer
to that nenory; otherwi se it returns ERROR

Sbrk is simlar to alloc except that there is no way to return
the menmory to the system

DI AGNOSTI CS

Returns ERROR (-1) if the menory coul d not be all ocated.

SEE ALSO

alloc(), brk(), free()

NOTES

49.1

NANVE

scanf - formatted i nput conversion

SYNCPSI S

i nt scanf(control [,pointerl] ...)
char *control

DESCRI PTI ON

Scanf is nearly identical to fscanf except that there is no
input file specification explicitly stated; the input is taken
from stdin. The paranmeters to scanf consist of a pointer to a
null termnated string (the control string) followed by zero or
nor e argunent s of type pointer. Scanf reads groups of
characters fromthe standard input, interprets them according
to the control string and wites the results into the argunents
pointed to by their corresponding argument pointers. The
control string may contain blanks, tabs, and new ines which
match optional white space in the input; it may contain
ordinary characters which nmust match the input string exactly
character per character; and it rmay contain conversion
specifications wused to control the interpretation of the input
stream Each conversion specification provides informtion used
to translate a segnent of the input streaminto a value which
may then be placed into an argunent pointed to by its
correspondi ng pointer in the argunent list. Conversion
specifications begin with a percent character (%, perhaps
followed by sone options, and termnated by a conversion
character. Al'l the options are, of course, optional but those
that are included nust appear in the specified order.

The legal options (in the order they nust appear) are as
fol | ows:

Star (*): indicates that this conversion specification has no
correspondi ng poi nter in t he argunment list. This
effectively skips a value in the input stream

Digit string: indicates the maxinumfield w dth; the maxi mum
nunber of characters which this conversion specification
will cause to be read off the input stream

Long (letter ell) indicates that the corresponding pointer
is pointing to a long rather than an int. This has no
ef fect when preceding an e or f.

The wvalid conversion characters and their neanings are as
fol | ows:

d A decimal integer is expected in the input string. Its
correspondi ng pointer is assumed to be of type *int.

o] An octal integer is expected in the input string. Its
correspondi ng pointer is assumed to be of type *int.

50.1

X A hexadecimal integer is expected in the inout string. Its
correspondi ng pointer is assumed to be of type lint.

h A decimal integer is expected in the input string. Its
correspondi ng pointer is assumed to be of type short.

u An unsigned integer is expected in the input string. |Its
correspondi ng pointer is assumed to be of type *unsigned.

c The very next character is read from the input string
(even if it's a blank). Its corresponding pointer is
assuned to be of type *char

s A string is expect ed in t he input string. |Its
corresponding pointer is assumed to be of type *char. It
should point to a space |large enough to hold the input
string plus an added null. Characters are read, starting
with the next nonblank character, until the nunber of
characters given in the precision is reached or until a
bl ank, tab, or newine is reached

e (same as f)

f A floating point nunmber is expected in the input string
Its corresponding pointer is assuned to be of type *fl oat.

The return value of this function is the nunber of paraneters
that were matched (read in off the input line) or ECF

DI AGNOSTI CS

SEE ALSO
fscanf (), sscanf()

NOTES
Exactly one line of input is consumed for each call to scanf.
Thus scanf will not fetch a new I|ine even though there are
still conversion specifications left to process nor will it
save any input left fromthe preceding line for the next cal
to scanf. If, for exanple, one nakes a call to scanf with a
control string which indicates 3 argunents are expected while
only 2 appear on the input line scanf will NOT continue to read

lines. Fscanf will sinply return with a value of 2. Likew se if
the input line had contained 4 argunents only 3 woul d have been
read while the fourth woul d be discarded

A hexadeci mal nunmber may not be preceded by a OX.

Any character wthin a conversion specifier whichis not a
| egal conversion specifier option or conversion character will
be ignored along wth the preceding percent sign and any
characters in between. Thus there is no way to match a '% on
the input Iine.

50. 2

NAME
_setext - Call FLEX SETEXT entry point

SYNOPSI S
#i ncl ude "stdio. h"
i nt _setext(fp, ext)
FI LE fp;
char ext ;
DESCRI PTI ON

The _setext function perforns a call to the FLEX routine SETEXT
to set a default file name extension into the given file
control bl ock

DI AGNOSTI CS

SEE ALSO

NOTES

This routine is used internally by sone of the file routines
and is not guaranteed to be supported in the future.

51.1

NAME
setjnmp - non-local goto

SYNOPSI S
#i ncl ude
i nt setjnp (envp)

j mp_buf *envp

DESCRI PTI ON
Setjnp works in conjunction with longjnp to provide the ability
to junmp outside of a function. Conpare this to a nornal goto
for which the destination nust be in the same function as the
goto statenent. Setjnp is used to mark a location as a

destination (that is save a copy of the current environment)
for later use by the longjnp routine. The argunent to setjnp is

a pointer to structure which will hold the current environment.
A pointer to this structure is used as one of the arguments to
| ongj np. Longjnp sinply restores the environnent which was
saved by the setjnp call. The effect 1is that execution

continues at the |ocation where the environment was saved
(inside the setjnp call). The appearance is that of a return
fromsetjnp.

To mark a location one nekes a call to setjnp. This wll
initialize the contents of the structure whose pointer was
passed as an argunent. From this call setjmp will return the
value 0. Later, when control is returned here froma | ongjnp,
the return value will be decided by the second argunment of the
I ongjnp call. (see |ongjnp)

Now a junmp can be made to this location by nmeking a call to
longjnp using a pointer to the same structure that was
initialized by setjnp as the first argunent and an integer as
the second argunent. The second argunent will be used as the
return value when control is transferred to the setjnp
envi ronment .

The destination of a longjnp nmust be in a function which has
not itself returned inbetween the call to setjnp and the cal

to | ongj np.
DI AGNOSTI CS

SEE ALSO
I 'ongj mp()

NOTES

52.1

NANVE

sprintf - formatted output conversion

SYNOPSI S
i nt sprintf(string,control [,argl]...)
char *string, *control

DESCRI PTI ON

Sprintf is nearly identical to printf except that rather than
witing to the standard output (stdout), the result is placed
in anull terminated string pointed to by the first argument
(which is assumed to be of type pointer to character). The
paraneters to sprintf consist of a pointer to char, followed by
a pointer to a null termnated string, followed by zero or nore
arguments. Sprintf formats the argunents followi ng the contro

string, wusing the control string to direct formatting and
conversion. It places the result in the string pointed to by
the first argument which nmust be | ong enough to accept it. The
control string may contain normal characters (which are sinply
copied to the output string) and conversion specifications
which control the cooying of the argunents. Each conversion
speci fication provi des i nformation used to format its
correspondi ng argunent followi ng the control string. Conversion
specifications begin with a percent character, (%, perhaps
followed by sone options, and terminated by a conversion
character. Al'l the options are, of course, optional but those
that are included nust appear in the specified order. The | ega

options (in the order they nust appear) are as follows:

Dash (-): indicates that, if the nunmber to be copied is shorter
than the specified field length, it should be Ileft
justified. if this option is omtted the nunber will be
right justified.

Zero (0): indicates that, if the nunber to be copied is shorter
than the specified field length, it should be padded with
zeros to fill th field length. |If this option is onmtted
the field will be padded with bl anks

Digit string: indicates the minimum field wi dth. The argunent
wWill be copied into a field at least this wide. This field
may be replaced with a star (*) which will cause the field
width to be taken from the next correspondi ng argunent
(assumed an integer) in the argunment |ist.

Period (.): separates the field width from the next digit
string.

Digit string: indicates the precision. For a float the
precision is the nunber of digits to be witten to the
right of the decinmal point. For a string the precisionis
t he maxi mrum nunber of characters which wll be witten.
This field my be replaced with a star (*) which will
cause the field width to be taken from the next

53.1

corresponding argument (assuned to be an integer) in the
argunment |i st

Long (I): (letter ell) indicates that its corresponding
argunent is to be witten as a long rather than an int.

The valid conversion characters and their neanings are as
fol | ows:

d The argunent is assuned to be of type int and is witten
in deci mal notation.

o] The argunent is witten in octal (w thout |eading 0).
X Argunent is witten in hexadecimal (w thout |eading Ox).
u The argunent is assumed to be unsigned and witten in

deci mal notation

c The argunment is witten as a character.

s The argunent is assuned to be a pointer to a nul
term nated string. Characters are copied fromthe contro
string to the output string until a null <character is
reached or until the nunber of characters given by the
precision are copied. The terminating null is not copied

e The argument is assuned to be a float and witten out in a

deci mal notation of the following form
[-]1d.ddddddde[+| -]1dd That is a negative sign if the nunber
is negative, a single digit, followed by a deci nal point,
followed by several digits, followed by an 'e', followed
by a sign, followed by two digits.

f The argunent is assuned to be a float and witten out in a
decinmal notation of the following form [-]ddd.dddd where
the length of the string of digits follow ng the decinal
point is given by the precision.

g Prints in either e or f format; whichever is shorter.
if a character which is neither an option nor a conversion
character is found while scanni ng a conversion specification
the <character following the percent sign (% is sinmply witten
and no conversion specification is assuned. Thus to wite a
percent sign one wites it twice (%9

DI AGNOSTI CS

SEE ALSO
printf(), fprintf()

NOTES

53.2

NANVE

sscanf - formatted string conversion

SYNOPSI S
i nt sscanf(string,control [,pointerl] ...)
char *string, *control
DESCRI PTI ON
Sscanf is nearly identical to fscanf except that its input is

taken fromthe string pointed to by the first argunent rather
than a file. The parameters to sscanf consist of a pointer to
char, followed by a pointer to a null terminated string (the
control string), followed by zero or nore argunents of type
poi nter. Sscanf reads groups of characters from the input
string pointed to by the first argument, interprets them
according to the control string, and wites the results into
the argunments pointed to by their corresponding argunent
pointers. The control string may contain blanks, tabs, and
new i nes which match optional white space in the input string

it may contain ordinary characters which nust match the input
string exactly character per character; and it may contain
conversion specifications used to control the interpretation of
t he input string. Each conversion specification provides
information used to translate a segnment of the input string
into a value which may then be placed into an argunent pointed
to by its corresponding pointer in the argument |ist.

Conversion specifications begin with a percent character, (%,
per haps followed by sone options, and termnated by a
conversion character. All the options are, of course, optiona
but those that are included nmust appear in the specified order.

The legal options (in the order they nust appear) are as
fol | ows:

Star (*) indicates that this conversion specification has no
correspondi ng poi nt er in the ar gunent list. This
effectively skips a value in the input string.

Digit string: indicates the maxinumfield w dth; the naximum
nunber of characters which this conversion specification
will cause to be read off the input string

Long (1): (letter ell) indicates that the correspondi ng pointer
is pointing to a long rather than an int. This has no
ef fect when preceding an e or f.

The wvalid conversion characters and their neanings are as
fol | ows:

d A decimal integer is expected in the input string. Its
corresponding pointer is assuned to be of type lint.

54.1

o] An octal integer is expected in the input string. |Its
corresponding pointer is assuned to be of type *int.

X A hexadecimal integer is expected in the input string. Its
correspondi ng pointer is assunmed to be of type *int.

h A decinmal integer is expected in the input string. |Its
correspondi ng pointer is assunmed to be of type *short.

u An unsigned decimal integer is expected in the input
string. Its corresponding pointer is assunmed to be of type
*unsi gned.

c The very next character is read from the input string
(even if it's a blank). Its corresponding pointer is
assuned to be of type *char.

S A string is expected in the input string. Its
corresponding pointer is assumed to be of type *char. It
should point to a space large enough to hold the input
string plus an added null. Characters are read, starting
with the next nonblank character, wuntil the nunber of
characters given in the precision is reached or until a
bl ank, tab, or newine is reached.

e (same as f)

f A floating point nunber is expected in the input string
Its corresponding pointer is assumed to be of type *float.

The return value of this function is the nunber of paraneters

that were matched (read in off the input line) or EOF

DI AGNOSTI CS
SEE ALSO

scanf (), fscanf()

NOTES

A hexadeci mal numnber may not be preceded by a Ox.

Any

character within a conversion specifier which is not a

| egal conversion specifier option or conversion character wll

be

ignored along wth the preceding percent sign and any

characters inbetween. Thus there is no way to match a '% on

t he

input line (i.e. witings %®6in the control string will not

cause it to try to match a %in the input string).

54.2

NAME
strcat - copy string

SYNOPSI S
i nt strcat (sl, s2)
char *s|, *s2;
DESCRI PTI ON

Strcat appends a copy of the string pointed to by its second
argunment to the end of the string pointed to by its first
ar gunent . It is assuned that the first argunent points to an
area | arge enough to acconpdate the resultant string

DI AGNOSTI CS

SEE ALSO
strcmp(), strlen(), strsave()

NOTES

55.1

NAME
strcnp - conpare strings |exicographically

SYNOPSI S
i nt strcenp(sl, s2)
char *s|, *s2;
DESCRI PTI ON

Strcnp |exicographically conpares its first argunent with its
second. It returns 1 if the first is greater than the second, O
if the two are equal, and -1 if the first is |less than the
second.

DI AGNCSTI CS

SEE ALSO
strcpy(), strlen(), strsave()

NOTES

56.1

NAME
strcpy - copy string

SYNOPSI S
i nt strcpy(sl, s2)
char *s|, *s2;
DESCRI PTI ON
Strcpy copies the string pointed to by the second argunent to
the area pointed to by the first. It stops after a nul

character has been coni ed
DI AGNCSTI CS

SEE ALSO
strcmp(), strlen(), strsaveo

NOTES

57.1

NAME
strlen - return string length

SYNOPSI S
i nt strlen(s)
char *s;

DESCRI PTI ON

Strlen returns the length of the string pointed to by the
argunent (not including the ternmnating null).

DI AGNOSTI CS

SEE ALSO
strcnp(), stcpy(), strsave()

NOTES

58.1

NAME
strncat - copy string

SYNOPSI S
int strncat (sl,s2,n)
char *s|, *s2;
int n;

DESCRI PTI ON

Strncat appends a copy of the string pointed to by its second
argunent to the end of the string pointed to by its first
argunent . Strncat copies at nost the nunber of characters
specified by its third argunent. It is assuned that the first
ar gunent points to an area |large enough to acconodate the
resultant string.

DI AGNOSTI CS

SEE ALSO
strcat(), strcmd(), strlen(), strsave()

NOTES

59.1

NANVE

strncnp - conpare strings |exicographically

SYNOPSI S
i nt strncnp(sl, s2,n)
char *s|, *s2;
i nt n;

DESCRI PTI ON
Strncnp | exi cographically conmpares its first argunent with
its second. It returns 1 if the first is greater than the
second, O if the tw are equal, and -1 if the first is |less
than the second. Strncnp conpares at nost the nunber of

characters specified by its third argunent; any others are
not consi dered.

DI AGNOSTI CS

SEE ALSO

strcmp(), strcpy(), strlen(), strsave()

NOTES

60.1

NAME
strncpy - copy string

SYNOPSI S
i nt strncpy (s1,s2,n)
char *s|, *s2;
int n;
DESCRI PTI ON
Strncpy copies the string pointed to by the second argunent to
the area pointed to by the first. It stops after it has copied

the nunmber of characters specified by its third argunment or
when a null character has been copied

DI AGNOSTI CS

SEE ALSO
strenp(), strepy(), strlen(), strsave()

NOTES

61.1

NANVE

strsave - save string in nmenory

SYNOPSI S
char *strsave(s)
char *S;
DESCRI PTI ON

Strsave attenpts to allocate a space in nenory |arge enough to
hol d the string pointed to by the argument (plus its
terminating null). If it succeeds strsave copies the string
pointed to by the argument into the nenory and returns a
pointer to it. If it fails to allocate sufficient menory,
strsave returns NULL.

The area used by "strsave" to save the string is obtained by a
call to "alloc" and thus may be returned to the systemby a
call to "free" using the string pointer as an argunent.

DI AGNOSTI CS

SEE ALSO

alloc(), free(), strcnp(), strcpy(), strlen()

NOTES

62.1

NANVE
tol ower - convert to | ower case

SYNOPSI S
char t ol ower (ch)
char ch;

DESCRI PTI ON
Returns its argument converted to | ower case

DI AGNOSTI CS

SEE ALSO
t oupper ()

NOTES

63.1

NAVE
toupper - convert to upper case

SYNOPSI S
char t oupper (ch)
char ch;

DESCRI PTI ON
Returns its argunment converted to upper case

DI AGNOSTI CS

SEE ALSO
t ol ower ()

NOTES

64.1

NAME
ul div unsi gned | ong integer divide

SYNOPSI S
| ong ul di v(opl, op2)
| ong opl , op2;

DESCRI PTI ON
udiv returns a long (unsigned) integer which represents the
nonfractional result of dividing the first (unsigned) |ong

i nt eger ar gunent by the second (unsigned) |ong integer
argunent .
DI AGNOSTI CS
Division by O will return (long) -1
SEE ALSO
ul mod(), ul nul ()
NOTES
There is actually no type "unsigned long". Udiv operates on

longs as if they were unsigned by ignoring the normal sign
conventions

65.1

NAME
ul mod - unsigned | ong nodul o operation

SYNOPSI S
| ong ul nrod (opl, op2)
| ong opl , op2;

DESCRI PTI ON
Unod returns a long (unsigned) integer which represents the
r emai nder of the result produced by dividing the first

(unsigned) Ilong integer argunment by the second (unsigned) |ong
i nt eger argunent.

DI AGNOSTI CS
When the second argument is zero (division by 0) the function
returns the first argument.

SEE ALSO
uldiv(), ulnmul()
NOTES
There is actually no type "unsigned long". U nod operates on

longs as if they were wunsigned by ignoring the normal sign
conventions

66. 1

NAME
ulmul - unsigned long nultiply

SYNOPSI S
| ong ul mul (opl, op2)
| ong opl , op2;

DESCRI PTI ON
Unul returns a long (unsigned) integer which represents the
result of nultiplying the first (unsigned) |ong integer

argunment by the second (unsigned) |ong integer argunent.

DI AGNOSTI CS
SEE ALSO
ul div(), ulnod
NOTES
There is actually no type "unsigned 1long". U mul operates on

longs as if they were wunsigned by ignoring the normal sign
conventions

67.1

NANVE
_unext - unextend fl oat

SYNOPSI S
fl oat unext (ef)
struct extflt
{
char sign
i nt exp;
| ong manti ssa;
} ref;
DESCRI PTI ON

_unext returns the float which is represented by the extended
floating point nunmber contained in the structure pointed to by
the argunent. The first element of the structure is assuned to
contain the sign bit of the nunber, the second el enent shoul d
contain the unbi ased exponent, and the third the mantissa

DI AGNOSTI CS

SEE ALSO
_extend()

NOTES

68.1

NAME
ungetc - push character back on input stream

SYNOPSI S
#i ncl ude "stdio. h"
i nt ungetc (c, fp)
FI LE *fp;
int c;
DESCRI PTI ON
Ungetc attenpts to push a character back on the input stream so
that it will be the next one retrieved. At npbst one character

may be pushed back inbetween calls to getc. The first argument
is the character to be pushed the second is a pointer to the
file into which the character is to be pushed. The file pointer
must have been previously returned froman fopen call unless it
is STDIN.

DI AGNOSTI CS
Ungetc returns ERROR (-1) if it could not push the character

SEE ALSO
getc()

NOTES

69.1

NANVE

ungetchar - push character
SYNOPSI S

#i ncl ude "stdio. h"

i nt unget char (c)

char C;
DESCRI PTI ON

Ungetchar attenpts to push

input streamso that it wll

one character
The argunent is

may be pushed

equi val ent to ungetc (c, STDIN)

DI AGNOSTI CS
Ungetchar returns ERROR (-1) if
character.

SEE ALSO

NOTES

t he character

back on

a character

st andard i nnut stream

back on the standard

be the next one retrieved. At nost

back

70

to

i nbet ween cal | s

1

to getchar.

pushed. This call is

could not push the

NANVE
unlink - delete file

SYNOPSI S
i nt unl i nk(nane)
char *nane;
DESCRI PTI ON

Unlink deletes the file whose nane is contained in the string
pointed to by its argument. Under sone operating systens unlink
sinply decreases a link count to the file and deletes the file
if the Iink count reaches zero as a result.

DI AGNOSTI CS
Unlink returns ERROR if the file could not be cvel eted

SEE ALSO

NOTES
Under the Flex and 0S9 operating systems wunlink sinply has the
effect of deleting the file. Under nore Unix |ike operating

systems such as Uni FLEX unlink decreases the link count on the
file. Such an operating systemw ||l delete any file whose |ink
count decreases to zero. There is a conpanion library routine

link(), which increases the link count on a file for those
operating systens which support it.

71. 1

72.

1

ADDENDUM TO THE | NTROL- C USER MANUAL

LI NKER AND LOADER REFERENCE MANUAL

-b Option
Two forms of the' "-b" option described on page L.1.6 of the

Li nker And Loader Reference Manual are now avail abl e

-b -or- - b=<Pat hnar ne>
The first form above, "-b", prevents the Standard Library,
libc.R, from being searched by the Linker. The second form
"-b=<Pat hnane>", defines <pathnane> as being a non-standard pl ace
in which to find the Standard Library, libc.R
-i_Option
A "-i" option has been added for the Linker. Wen. a -i is
specified on the link comand line, this option specifier wll
force | oading of all npbdules on the comand |ine
-1 _Option
Two forms of the "-1" option described on page L.1.8. of the

Li nker And Loader Reference Manual are now avail able

SI[s]Ix][u]l[=<file>] -or- SIS [X][ul[=<file>]
The first formabove, where a single leading "1" is specified
causes a linker listing to be produced exactly as described on
page L.1.8 of the User Mnual. The second form where a double
leading "I" is wused, instead causes a loader Ilisting to be
pr oduced. That is, an option specification beginning with "-1"
will be ignored by the Ilinker itself and passed intact to the

| oader to cause a |loader listing to be generated

-r_option

A "-r" option has been added for the Linker. The -r option
specifier causes the .RL output file generated by the Linker to
be saved during an automatic |ink-and-1oad sequence. Nor mal |y

(when the -r option is not speci fied), when the Linker
automatically calls the Loader, the Linker passes the Loader a
-z option specifier which causes the Loader to delete its input
file (ie the Linker's .RL output file) when the Loader has
finished with it. Specifying the -r option on the |ink comand
line inhibits the Linker from passing the -z specifier to the
Loader, thus causing the internmediate RL Linker output file to
be retai ned.

STANDARD LI BRARY REFERENCE MANUAL (UC6809 Library Only)

The Standard Library Reference Manual erroneously describes two
routines that do not exist in the supplied Standard Library:
rand - Return random nunber
srand - Set seed for random nunber generator
Therefore, please delete/ignore the descriptions for these two
routines.

APPENDI X A
FC6809 STANDARD LI BRARY

NON- ZERO CLASS LI BRARY ROUTI NES

As discussed in the Conpiler Reference manual and Li nker Reference
manual , all relocatable nodules (including those contained in the
Standard Library) have a special identifying attribute called a
"class" specifier, which is a nunber in the range 0 through 255. At
link time, the Linker uses a nodule's class nunber to differentiate
between different versions of identically named nodules that may
possibly co-exist within the sane |ibrary.

In the case of the FC6809 Standard Library, nost of the function

nodul es supplied in the |library have a preassigned nodure class
specifier of "O (zero). In fact, each of the wvarious runtine
support functions is furnished and available for use as a class 0O
type of nodule. However, the library also includes "alternate"

versions of sone runtime functions. Were such alternate support
routines exist, they have been given the sane filename as the
"standard" version of the routine, but have been assigned non-zero
cl ass numnbers.

In all cases, the class 0 version of a given library routine wll
always provide the full runtine support features that have been
described for that routine in this reference manual. Any non-zero
classes of library routines, by conparison, provide a nodified (and
typically abbreviated) Ilevel of support for the given runtime
function, usually resulting in snmaller runtime overhead in the final
pr ogr am

Four non-zero class categories of library functions are included in
the FC6809 Standard Library; class 5, class 6, class 7, and cl ass 8.

Classes 5 and 6 are associated w th selection of nodified versions
of the output formatting routines, such as printf, fprintf, and
sprintf; classes 7 and 8 select modified versions of the input
formatting routines, such as scanf, fscanf, and sscanf. \Wereas the
class 0 versions of these respective routines provide full support
for longs, integers, and floating point numbers, the non-zero class
versions differ as foll ows:

Cass 5 - Qutput formatting routines will support only integers.

Class 6 - Qutput formatting routines will support only integers

and | ongs.
Cass 7 - Input formatting routines will support only integers.
Class 8 - Input formatting routines wll support only integers
and | ongs.

A2

APPENDI X D
I NSTALLATI ON OF THE FC6809 | NTROL-C COWPI LER

This section describes the installation of Introl-C on the Flex
operating system

The FC6809 Introl-C Conpiler is shipped on standard 8 inch or 5 inch
floppy disk format. Verify that the disk is indeed intended for the
Flex operating system and also that the disk format is what you
expect by reading the label on the distribution diskette envel ope.
Not e that the disk shipped to you is not bootable and thus cannot be
used to start your Flex system

Before it can be used, the Conpiler and its associated prograns nust
be copied fromthe distribution disk to the systemdrive. Unless
specified otherw se, the programto be conpiled is assumed to be on
the work drive

Notice that the "stdio.h", "flex.h", and "setjnp.h" files are NOT
capitalized. When you copy these files, be sure that their nanmes are
in |ower case. On many FLEX systens file names are automatically
converted to upper case even when typed in | ower case. Many systens
already have a wutility to defeat this "feature" but, if not, the
distribution disk includes a utivity called "CASE"' which, when run,
prevents this automatic conversi on. The CASE program toggl es between
"upper/|l ower case' and 'upper case only' each time it is run so if
it is run an even nunber of tines the system w |l again convert
| ower case to upper.

You nmay also wish to take note of the other files you find on your
di stribution disk. They include source code exanples of many of the
standard library routines and perhaps some useful or interesting
routines. See your FLEX System Users Manual for details on meking
copies of files.

INTROL-C is a registered trademark of Introl Corp
Flex is a trademark of Technical Systems Consultants, Inc.

0D. 1

| NTRCL

LI NKER AND LOADER
REFERENCE MANUAL

The contents of this manual have been carefully reviewed and are
believed to be entirely correct. However, Introl Corp. assunes no
responsibility for inaccuracies.

The software described in this manual is proprietary and is
furni shed under a license agreenent fromlilntrol Corp. The software
and supporting docunentation may be used and/or copied only in
accordance with said |license agreenent.

INTROL-C is a registered trademark of Introl Corp.
UNI X is a trademark of Bell Laboratories

TNI X is a trademark of Tektronix, Inc.

INFX is a trademark of Introl Corp.

Introl Corp.
647 W Virginia St.
M | waukee, W 53204 USA

tel. (414) 276-2937

Copyright 1983 Introl Corp.
Al'l Rights Reserved

Tabl e of Contents

Li nker And Loader

Tabl e of Contents ...
Linker

Loader

Li brary nanager

Appendices

L. 0.

Ref er ence Manual

1

L. 0.

2

LI NKER

The function of the Linker is to join several relocatable object
nmodul es together to form a single relocatable object nodule as the
result. Normal |y, when the Introl Linker finishes, it will
automatically call the Loader, causing the object nodul e produced by
the Linker to be then translated into an executable file by the
Loader . Once such executable file has been generated, the actua
object nodule generated by the Linker is normally automatically
del eted. Thus, although the Linker itself produces an internediate
rel ocatable nodule, the nore usual result of a |linker comand |ine
call is an executable file that is subsequently produced by the
Loader. Options are provided, however, to pernit the Linker's output
module to be retained even though an executable file has been
produced; also, an option exists to inhibit the Loader call entirely
when the desired result is sinply the relocatable nodul e generated
by the Linker.

LI NKER COMVAND LI NE

The general formof the |link command |ine is:
ilink <files> {<options>} {<files>} {<options>}

where <options> can be zero or nore Linker and Loader option
specifiers (described later in this Section), and <files> are the
filenames of the relocatable files or libraries which are to be
input to the Linker. Unless an option to inhibit loading is
explicitly specified on the conmand line (the "-n" option), the
Loader will be automatically executed when the Linker finishes

The Linker expects each of its input files to have a filenane

extension; if none is explicitly defined, the fil enane extension is
assuned to be ".R', whichis the filenane extension normally
assigned to relocatable files generated by the Assenbler. If the
Linker is being run i ndependently (ie wth the "-n" option
specified, which inhibits the automatic call to the Loader), the
Li nker will produce a relocatable nodule as the end result, having
the filename extension ".RL". Such nodules (ie nodules which have
been |inked but not | oaded) are thensel ves rel ocat abl e nodul es which
can be legally reused as inputs to the Linker, if desired. |If the
Loader call is not explicitly inhibited, a link command |ine cal

will result in generation of an executable output file as the fina
result (ie, the file produced by the Loader pass). In this latter

case, the internediate relocatable nodule generated by the Linker
(ie the file having a ".RL" filename extension) will not be retained

unless the wuser specifically opts to do so (via the "-r" Linker
option). In either <case, the filenane assigned to the output
nmodul e(s) produced as a result of the linker call wll be detern ned
by the "primary function nane" synbol, which is discussed under

Qperation, bel ow.

L.1.1

OPERATI ON

When the Linker is first invoked, it begins its linking process by
attenpting to resolve two references which are inplicit to the
Linker. The first is called the "primary function name", the second
is the program "entry point". The wuser nmay, as an option
specification on the link comand Iline (the "-nme<file>" option),
specify any synbol as a primary function nane. |If none is explicitly
defined, however, the primary function nam ng synbol will be assuned
to be " min", the synbol that represents the name of the usua
starting function ("main") in a C program The filenane of the
nmodule in which the Linker finds the primary function nane will
normally be the nane assigned to the Linker's relocatable output
modul e, but with the filenane extension ".RL" being appended to the
Li nker's out put nodul e.

The Linker begins its search by first searching through all of the
files specified on the link cormand |line, searching these files in
the order they are listed, attenpting to resolve the primary
function name. |If it succeeds, it will include the nodule which
contains the definition of the primary function nane, and will then
proceed to resolve any external references which that nodul e nakes.
(I'f the primry function name cannot be found, the Linker
automatically |l oads the Standard Library and attenpts to resol ve the
"entry point" synbol, as described below.) Wen all possible
external references caused by inclusion of the nodul e containing the
primary function name have been satisfied, the Linker wll then

attenpt to resolve the "entry point" synmbol. In doing so, the Linker
will first search through the files on the link command line, and
then search the Standard Library if necessary, looking for a nodul e
whi ch has an entry point synbol defined. If it finds one, it wll

include the nodule which contains the entry point and attenpt to
resol ve any resultant external references that nodul e nakes.

An unnodified Standard Library wll always contain a nodule for
which an entry point is defined. This is the nodule usually used to
set up the environnent required before the first C function (usually
"mai n" can be executed. The Conpiler itself does not normally
define an entry point when it produces a nodule. An assenbly
| anguage programmer, however, nmay specify the entry point of an
assenbly |anguage nodule by placing the nane of the entry point
following the END assenbler directive. If there is nore than one
modul e with an entry point defined, the Linker will assume the entry
point is that of the first such nodule it finds after beginning its
search. It begins its search with the files on the |ink comand
line, scanning left to right, and then searches the Standard
Library, top to bottom Therefore, if a nodule on the |ink conmand

line defines an entry point, that nodule wll be the first nodule
found by the Linker and, therefore, wll be the one selected for
inclusion (ie rather than the nodule contained in the Standard
Li brary). If no nmodule on the |ink command |ine contains an entry

point, the Linker will assune the entry point synbol is "cstart",
whi ch happens to be the usual name for the Standard Library routine
whi ch sets up the environment for a C program

L.1.2

The Linker terminates when it has no nore external references to
resolve or, alternatively, when it runs out of files to search in
attenpting to satisfy any unresolved references that might stil

exi st. The Linker's output will be a rel ocatable nodul e that has the
same nane as the nane of the nodule which contains the prinary
function name, but with a ".RL" filenane extension appended. When

t he Li nker has determined it has resolved all the externa
references it possibly can, it will automatically call the Loader.
If all external references have been successfully resolved by the
Li nker, the Loader will load the Linker's output into an executable
output file. If unresolved references still exist, however, the

Loader will conplain and | oading of the nodule will be unsuccessful

As indicated above, it is perfectly legal to use the Linker to link
several nodul es together which, of thenselves, do not satisfy al
the external references they nmake. This feature is very useful when
it is desired tolink two or nore relocatable files together to
produce a single resultant "partially 1inked" nodule (which may
contain sonme unresolved references). Such partially Iinked nodul es
may thenselves then be reused as inputs in subsequent linking
operations, and linked with other relocatable nodules as necessary.
In such-cases, when it is the user's intention to do partial |inking
of this type, a user option ("-n") to prevent automatic execution of
the Loader nust be specified on the link conmand |ine.

In nmany cases, such as for a conpiled C programcontained in a
single nodule, calling the Linker may be as sinple as specifing the
nane of a single relocatable file produced by the Conpiler. For
exanple, if the file to be linked and | oaded had the nane "test. R
(which is the file that would be produced by the Conpiler if the
user had conpiled a programcalled "test.c"), the user could cal
the Linker by entering the foll ow ng:

ilink test

For this exanple, the Linker would proceed to first link the file
"test.R" with applicable referenced functions from the Standard
Library ("libc.R'), producing the Ilinked nodule "test.RL" as an
intermediate result. It would then automatically call the Loader,
which would load "test.RL" into either an executable file or a file
of load records, as appropriate to the type of Introl Loader being
used. Since the "-r" option was not specified on the |inker command
l'ine for this particular exanpl e, the Loader would al so
automatically delete the "test.RL" file when it had finished using
it. Note that it is unnecessary to specify the Standard Library,
"l'ibc.R', on the command line; the Standard Library is always
inmplicit to the Linker when it is called.

LI NKER CLASS LI ST

Each relocatable nodul e produced by the Assenbler, as well as each
nmodul e contained in the Standard Library, has an attribute called

L.1.3

its "class", which is a user-assignable nunber from"0" (zero) to
" 255", During the 1linking process, the Linker always uses the
nmodul e's class nunber in conbination with the nodule's filenane for
modul e identification purposes. The class nunber is, in effect, an
"extra identifier" that provides a nechanism for distinguishing
bet ween several identically named nodul es that nmay be contained in a
l'ibrary.

The default "class" for nodules produced bv the Assenbler is "0"
however, any other |egal class nunber (ie "1" through "255") nay be
sel ectively assigned to any of these nodules by the user. Simlarly,
nost of the library routines contained in the Standard Library,
libc.R have a preassigned class nunber of "C', although severa

non-zero class nodules are also supplied. For exanple, libc.R
contains 3 different classes of the ofnt routines used by the
"printf", "fprintf", and "sprintf" Standard Library functions
(classes 0, 5, and 6) and 3 different classes of the inft routines
used by the "scanf", "fscanf", and "sscanf" Standard Library
functions (classes 0, 7, and 8). The class 0 ofmt routine supports
longs, ints, and floats; the class 5 ofnt routine supports |ongs
only; and the class 6 ofm routine supports longs and ints.
Simlarly, the <class 0 ifnt routine supports longs, ints, and

floats; the class 7 ifm routine supports only longs; and the class
8 ifnt routine supports longs and ints.

Because of a relocatable nodule's class attribute, one of the link
tinme options available to the user is the specification of a "linker
class list" on the link command |ine. Use of a class list
specification is only necessary when the user wants nodul es other
than class "O' nodules to be considered for inclusion by the Linker

The linker <class list specification defines tw things to the
Li nker: (1) it defines the specific non-zero classes of nodul es that
should be potentially considered for that particular link process,
and (2) it sinultaneously establishes a priority ranking of these
cl asses of nodul es, which enables the Linker to choose the "correct”
nmodule from anbng possibly several that nmay have been given
identical filenanmes in a library.

A linker class list is specified on the link conmand |ine as one or
nore <option> entries of the form

t=<class list>

where <class list>is a series of one or nore nunerical values from
"1" through "255" (see -t option below). The nunerical val ues
contained in <class list> represent those specific non-zero nodule
classes, listed in the order in which they are to be "preferred" for
possible wuse, which are to be considered potentially wvalid for
inclusion for that particular link process. Mdules of class "O' are
ALVAYS inplicit in any class list specification and therefore are
not included in a linker class list on the command Iine. The Linker
automatically assigns |owest "preference" to class "O' nodul es and
will only use aclass 0 nodule if it <cannot find sonme other

L.1.4

identically naned nodul e having one of the non-zero cl asses defined
in the linker class |ist.

As mentioned earlier, a class list specification on the linker
command |ink is only necessary if nodules having a class other than
"0" are to be considered for use by the Linker. Wen a class list is
specified, however, it is inportant to note that the order in which
any class nunbers appear on the conmand line is just as significant
to the Linker as the actual class nunbers thenselves. This is
because the Linker (which scans the entire command line fromleft to
right to deternmine all of the acceptable classes) assunes that the
class nunbers are listed by the user in ordered sequence on the
command line, with the "nost preferred"' class being the class it
first encounters on the command line, the "next nost preferred"
class being the second class it encounters, and so on. The Linker
will always select the "nost preferred" class of any given naned
nodul e that it can find.

An ordered class list of this type is necessary for the user to
unanbi guously define, and the Linker to properly select, the
i ntended nodul e in nmany i nstances. For exanple, suppose the user had

conpiled and assenbled a program nodule, "filel", (with a class of
"0") that referenced two library routines contained in the Standard
Library, one called "abc" and the second called "xyz". Furt her

assune that two different versions of the abc npdul e existed, one
with class 0 and the other with <class 1; and three versions of xyz
existed, one with class 0, one with class 1, and one with class 2
If the user wanted to link filel with the class 1 npodule of abc and
the class 2 nmodule of xyz, he could enter a |link conmand |ine such
as:

ilink filel t=2,1

In this case the Linker would ascertain that, given the choice, it
should give highest preference to using class 2 nodules, next
hi ghest preference to class 1 nobdules, and |owest preference to
class O nodules. During the linking process the Linker would first
look for a class 2 filel module and, failing that, then | ook for a
class 1 filel nodule and, failing that, then look for a class 0 file
1 nodule, which it would find and therefore include. The Li nker
would then begin searching the Standard Library to resolve the
references filel nmakes to abc and xyz. it would begin its search for
abc by first looking for an abc class 2 nodule and, failing that,
then begin | ooking for an abc class 1 nodule which it would find and
link inwith filel to resolve the reference nade to abc. Simlarly,
it would begin its search for xyz by first looking for an xyz cl ass
2 nodule which it will find and link into filel to resolve the
reference made to xyz. Aithough an abc class 0 nodul e and xyz cl ass
1 and xyz class 0 nmodules also existed in the library, these would
have been ignored by the Linker inasnuch as it had been able to find
"nore preferred" versions of abc and xyz.

By comparison, if the user had used a |ink command I|ine such as

L.1.5

ilink t=1,2 filel

the Linker would instead have given highest preference to class 1
nmodul es and next hi ghest preference to class 2 nmodules, with class O
nmodul es again having lowest priority (as is ALWAYS the case for

class O nodules). In this case the Linker would first look for a
class 1 filel nodule, then a class 2 filel nodule, and then a cl ass
0O filel mbdule which it would find and incl ude. The Li nker woul d

then look for, find, and link in the ("npost preferred') class 1 abc
nmodul e; then look for, find, and link in the ("nobst preferred")
class 1 xyz nodul e. The class 2 xyz nodule would ONLY have been
considered for inclusion in this instance if the Linker were unable
to find the "nore preferred" class 1 nodule, which of course it does
find in the exanple situation given

Notice that the class list may contain nultiple class specifiers and
that class zero is ALMAYS inplicit in any class list specification

LI NK COWAND LI NE OPTI ONS

Li nker options, as well as Loader options, may be specified on the
link conmmand line. Loader options, if specified, will be passed on
to the Loader when it is automatically called by the Linker. The
"l'inker-specific" options listed below are those options which apply
specifically to the Linker, per se. The Loader options that may al so
be specified on the Ilink command line are discussed in the Loader
Appendi ces to this nanual .

Li nker - Specific options include:

-b
This option prevents the Standard Library, "libc.R', from being
searched by the Linker. Usually this option is specified in
conbination wth the "-f" Linker option, discussed bel ow, when
prograns are being

-c=<file>
The option specifies that <file>is a conmand file where the
Linker will find additional information. The conmand file is a
text file which may contain extra options and additional file
nanes to be referenced followi ng those |isted on the command
I'ine. Each option or file name nust appear on a separate line
in the command file.

-d[<c>]

This optionis wused for specifying, at link tine, which of
several (optionally available) Introl Loaders is to be called
by the Linker when linking is conpleted. Specifically, use of
this option will cause the Linker to call the Loader whose
Introl filename is "<c>ld", where the <c> represents the first
character of the desired Loader's "nane". For exanple, the

L.1.6

option specification "-dh" would instruct the Linker to cal
the Loader naned "hld" when it finishes (assuning of course
that the "hld" Introl Loader is actually available for use). If
the -d[<c>] option is not specified, or if there is no
character specified via the <c> entry, the Loader sel ected for
use wll default to the "standard" Loader supplied with the
Conpiler. (In general, the "standard" Loader is one which
pr oduces code that 1is executable on the Conpiler's host
operating system) The several different types of Loaders that
are optionally available for wuse, and the "<c>d" nanes
associated wth each, are described in the Loader Appendi x of
t hi s manual

NOTE: When an "optional" target- system dependent-type of
Loader is being specified for wuse, the conpatible "standard
library" supplied with that optional Loader nust also be
specified for use during the linking process. In such cases the
"-b" Linker option can be used to inhibit the Linker's use of
the "standard® Ilibc.RIlibrary, and the "-f" option wused to
instruct the Linker to instead find and use the "optional"
standard library which is conpatible with the target operating
system

- e=<synbol >

This option sets the entry point. If the <synbol> being
specifed as the entry point refers to a C synbol that has been
generated by the Conpiler, the <synbol> nanme nust include a
| eadi ng underscore character (ie the Conpiler automatically
pre-pends a | eadi ng underscore to all synbols it generates). If
this option is not used, the Linker will search through all the
nmodules in the order they are listed on the command |ine, and
then search the Standard Library if necessary, in an attenpt to
find one which has an entry point defined. The entry point wll
be that of the first such file the Linker finds. If no input
nodul e specifies an entry point, the Linker will usually find
one called "cstart" in a nodule of the same nane in the
Standard Library. For assenbly |anguage prograns, an entry
point is placed in a nmodule by placing the desired entry point
synbol on the "end" directive in an assenbly | anguage file (see
Assenbl er section of the Conpil er Reference Manual).

-f<string> or -f=<string>
This option, which has two forms, is used to specify that
additional Ilibraries wll be found in the standard library

pl ace which are to be searched by the Linker (ie libraries that
are to be searched in addition to the Standard Library,
libc. R) .The "-f<string>" formof the option specifies that an

additional Ilibrary to be searched is naned "lib<string> R
wher e <string> represents any series of characters. The
"-f=<string>" formspecifies that an additional library to be

searched is named "<string> R', where <string> can represent
any string of characters. This option nust normally be used
(together with the "-b" option nentioned above) when an
"optional" Loader is being called; this is necessary so that

L.1.7

the Linker uses a "standard |library" which is conpatible with
that particul ar Loader.

SI[s][x][ul[=<file>]

This option causes a linker listing to be produced. The
optional file nane indicates that the listing is to be placed
inthe indicated file rather than being |listed on the console.
The "s", "x" and "u" characters are all optional and affect
the listing's contents, as follows: |If the "s" character is
specified the listing will include all synbols. If the "X
character is specified the listing wll include a cross
reference synbol listing. If the "u" character is specified the
listing will include a list of the nodules taken from each
the files specified on the command |ine. Any conbi nati on of
these three characters nmay be specified.

- nE<synbol >

This option defines the primary function nam ng synbol. The
primary function name is the external reference which the
Li nker attenpts to resolve first. If left unspecified, the

nam ng synbol defaults to " _nmain", which is usually the primry
function in a Cprogram (At the C programlevel this prinmary
function nane is specified as "mmin", but the |eading
underscore is added by the Conpiler, as is the case for al

synbol s generated by the Conpiler. It is therefore inportant to
r enenber that, when specifying a nanming synbol that is
contained in a conpiled nodule, the synbol wll always begin
with a |leading underscore.) The filenanme of the nodul e which
contains the primary function nanme is nornally the nane that

will be assigned to any file(s) produced as a result of a
Li nker call line.

-n
This option prevents the Loader from being automatically
execut ed when the Linker finishes. Wen the "-n" option is not
specified, the Linker will normally default to calling the
"standard" Loader (unless sone other |oader type has been
optionally specified wusing the "-d(<c>]" option discussed
previ ously).

-o=<file>
This option is used to assign a specific name, represented by
<file> to the Linker's output file. If this option is not used
the output file will be given the sane nanme as the nodule in
which the prinmary function nane is found. If no filenane
extension is explicitly specified, the Linker output filenane
will default to having a ".RL" extension.

- P[<C]

This option is useful only an Unix-like operating systens, such
as UNLX, INIX, and TNI X for exanple. On such systens, it causes
the output of the Linker to be piped to the Loader rather than
to be transferred in a tenporary file. On sone systens this

L.1.8

wi Il cause a noticeable speed, inprovenent. The [<c>] indicates
an optional character which nay be used to specify that the
Li nker output should be sent to a particular optional Loader
when use of the default "standard" Loader is not desired. The
<c> character, when specified, represents the first letter in
the Introl nanme of the desired Loader, just as for the case of
the "-d[<c>]" option described previously.

This option specifies that the output file is to be stripped of
all non-entry defined synbols. This is useful when producing a

partially 1linked nodule in which the user wishes to "hide" al
the already resolved synbols. Partially linked nodules are
typically nodules that have been |inked, but not |oaded, which
may still contain unresolved references.

-t=<cl asslist>

The

appl i
I'ine.

This option is used to define an ordered listing of those
non-zero class nunbers, between 1 and 255, which are to be
"preferred" for use in the linking process. The <classlist> can
be a series of one or nore nunbers from"1" through "255". Wen
a class list contains nultiple class nunber entries, a conma or
peri od nust separate successive class nunbers, as in "t=3,7,4",
for exanple, which specifies the classes "3", "7", and "4". The
order in which class nunbers are entered on the |ink command
line is significant to the Linker and defines the order of
cl ass preference. The first-entered (ie left-nost) class
appearing on the Ilink command line wll be given highest
preference for inclusion by the Linker, the second-entered
class will be given next highest preference, and so on. Mdul es
of class 0 are always considered by the Linker as having | owest
priority and are wused inthe linking process only if an
identically naned nodule having a class nunber which is
included in the linker class list specification cannot be found
by the Linker. For exanple, a class list such as "t=3,7,4"
tells the Linker to preferably use nodules of class 3 (if they
can be found), or else use class 7 nodules (if they can be
found), or else use class 4 nodules (if they can be found), or
el se, as a last resort, use nodules of class 0 (if they can be
found).

reader is referred to the Loader Appendices of this manual for
cable Loader options that may be specified on the |ink command

L.1.9

L.1.10

LOADER

It is the Loader's function to fix absolute addresses for the
relocated values in a relocatable nodule, thereby converting a
relocatable nodule into an "executable" output file. The Loader is
usually called automatically by the Linker but it nmay al so be called
separately by the user. As indicated below, several different
Loaders are (optionally) available for use with Introl-C and, if the
user has elected to obtain such optional Loaders, a variety of
executable output file formats can be generated, depending on the
Loader bei ng used.

Each resi dent Introl-C conpiler package, and each Introl-C
cross-conpiler package, nomnally includes a single, specific type
of Introl Loader which is considered as being the "standard" Loader
for that «conpiler's particular host system configuration. For
resident Introl-C Conpiler packages, the 'standard Loader that is
furnished is an "operating system dependent"” type of Loader which
generates an output file that is executable on that particul ar
Conpiler's host system For cross-conpiler versions of Introl-C, the
"standard" Loader furnished is typically a "hex" type Loader that
generates a file of output load records, which can be either
Motorola S-Records, intel Hex, Tektronix Hex, or Tektronix Extended
Hex at user option. Besides the "standard" Loader that acconpanies
any given Conpiler type, it is also possible for the wuser to
optionally obtain and use other conpatible "cross-Loaders" which
generate output formats unrelated to the Conpiler's host operating
system For exanple, "hex-type" Loaders are optionally available for
use with resident versions of Introl-C, "operating system dependent”
type Loaders are optionally available for wuse with cross-conpiler
versions; etc.

There are, therefore, several different species of Loaders, (as well
as several different types of related Standard Libraries) that may
potentially be used under Introl-C. The "standard" Loader supplied
with your Introl-C package, as well as any other Loaders that nmay
have been optionally ordered, are described in detail in the Loader
Appendi x of this Linker Reference Manual. This Loader section
describes the general features that are common to all Loader types.

Normally the input to the Loader is expected to be a relocatable
file which has no unresolved external references; if unresolved
references do exist in its input, loading wll normally not be
successful . A Loader option is provided, however, to force a file to
be | oaded even if it contains unresolved references.

Usually a relocatable file has to be linked before it can be used as
input to the Loader. It is also possible, of course, to assenble a
file which nakes no external references and then use the rel ocatable
output file produced by the Assenbler directly as input to the
Loader (ie without having actually linked it).

L.2.1

LOADER COWIVAND LI NE

The "standard" Loader supplied with your Introl-C package (see
Loader Appendices to this manual) is normally automatically called
by the Linker when the Linker pass finishes. However, |inker command
line options exist (see Linker Section of this nanual) that nav be
used to alternatively force the Linker to automatically call other
optional Loaders (assum ng such optional Loaders have been obtai ned
for wuse). Situations also arise when it is desirable to explicitly
call the Loader alone, wthout first executing the Linker. Wen such
situations arise, the Loader nmay be independently called by the user
with a | oader command |ine of the general form

<c>ld <file> {<option>}

where <c>ld represents the Introl filenane of the specific Loader
being called, <file>is the name of the (linked) rel ocatable nodule
which is to be | oaded, and (<option>) represents zero or nore Loader
option specifiers.

Each of the potentially usable Introl Loaders is uniquely identified
by a 3-letter Loader filenane, the last two letters of which are
al ways "1d". The <c> designator indicated in the "<c>ld" |oader cal
on the command l|ine therefore represents the first letter in the
three-letter Loader nane. For exanple, to call the Introl hex type
of Loader, which has the filenane "hld", the "<c>d" entry on the
command |ine would actually become "hld". For further specifics on
the nanes of the | oaders which can be legally accessed, refer to the
Loader Appendices of this nanual

The relocatable file that is input to the Loader is expected to have
a filenarne extension; if none is specified, the default filenane

extension ".RL" is assuned. Nornmally the name of the executable
output file will be identical to the name of the input file, but
with a filenane extension typically added by the Loader. The

filenane extensions each Loader appends are discussed in the Loader
Appendi ces to this nanual .

LOADER OPTI ONS

Each type of Loader available for use with the Introl-C has its own,
general ly unique set of options. The specific options that apply to
each Loader furnished are discussed in the Loader Appendi ces.

When the Loader is being called separately, Loader options are

specified directly on the |oader comand |ine when the Loader is
being automatically called by the Linker, Loader options are
specified on the Ilink command line, together wth the Linker
options. I f Loader options are specified on the Iink command I|ine,
any such options (ie those that do not apply to the Linker) will be
automatically sent on to the Loader. For the nobst part Linker and

Loader option specifiers tend to be distinct, so that there is
little anmbiguity when Loader options are specified on the link
command |i ne.

L.2.2

LI BRARY MANAGER

This section describes the features and operation of the Intro
Li brary Manager.

For a programto be succesfully linked and | oaded, all its externa
references nust be resolved. That is, any functions which are
referenced by the program but not included in the program nust be
added to it at link tine. The Linker can be directed to search
various files to find already conpiled functions which satisfy these
references. Wien it finds a piece of conpiled code which satisfies a
reference it includes the code in the resultant program Any
compil ed or assenbled file nmay be a legitinmate input to the Linker.
To facilitate the Linking process, it is often useful to have a file
whi ch contains nore than a single piece of conpiled code so that the
user can specify a whole series of routines to the Linker with a
m ni num of fuss. Such a file is called a library file, an exanple of
which is the introl-C Standard Library (libc.R). The Linker can
search a library file and selectively extract only those nodules it
requires to link the file.

LI BRARY FI LES

A library file is a file which contains one or nore |inkable object
nodul es of the type produced by the Introl Assenbler. Wen a file is
conpiled and assenbled, the result is exactly one |inkable nodule
which is placed into a file. This file is actually a library which
happens to contain only a single nodule. When the user links a
program one or nore of these "libraries" are specified on the link
command line. Usually the "libraries" are those produced as a result
of a conpilation and contain only a single nodule, however, they nay
al so contain several nodules. The Library Manager, "libman", is a
program which allows the user to place several nmodules into a single
library file. Wen the user has a large set of nodul es which are

commonly wused in progranms, it is usually convenient to place them
all in one library and then sinply specify the Iibrary once on the
link conmmand line. The Linker will extract only those nodules it

requires in order to satisfy the external references of the program

The Linker is designed to automatically search the "Standard
Library", libc.R if it still has external references to satisfy
after it has exhausted all the alternatives provided by the nodul es
specified an the link command Iine. For nmany C programs, the
Standard Library is usually where nost of the external references
are satisfied. Many users find it wuseful to add to, or nodify
routines in, the Standard Library.

The Library Manager is the utility programwhich allows the user to
create new libraries and also to maintain existing ones.

LI BRARY MANAGER

Because any file that is produced by the Assenbler is already
technically a library file, the Library Manager can correctly be

L.3.1

| ooked upon as a program which nanipulates libraries. Its input is a
library file, such as a linkable object file produced by the
Assenbl er. Thus, in the description below, references to "libraries"
also inplicitly includes those files output by the Assenbler.

The Library Manager is called by entering a command |ine of the
form

i bman <lib> {<optional -direct-command>}

wher e <lib> is the nane of the library to be edited and
<optional -direct-command> is an optional command to the Library
Manager . If the <optional-direct-command> entry is onitted, the
Li brary Manager will enter its "Interactive Mde" of operation and

solicit library managenent commands fromthe user termnal.

The input library specified by <lib> may be either a new library or
an existing one and, unless the user takes contrary action, it wll
al so be the nane of the output library.

MODES OF OPERATI ON

The Library Manager has three nodes of operation: Direct Mde,
Interactive Mde, and Command Fil e Mdde. The nost convenient to use
for sinple additions and deletions to the library is the Direct
Mode. For nore extensive nodifications the user may instead wish to
use Interactive nmode. The third node is the Command File node which
causes the Library Manager to read its commands froma file rather
than getting themfromthe user terninal.

Direct Mde: |In Direct Mde the wuser is permtted to specify a
singl e command on the |ibrary nanager command |ine. Wen the Library
Manager is called, it executes this single command function and then
i medi ately exits from the Library Manager. Wen nodifying
libraries, however, a single command function is often all that is
necessary to acconplish the change desired by the user. Wen Direct
Mode s being used, the desired command is specified right on the
command line, following the <lib> library specification. Any Library
Manager command may be used in the Direct Mde.

Interactive Mde: if no command is specified on the Library Manager
call line, the Library Manager will enter its Interactive Mde of
operati on. In Interactive Mode the Library Manager wll print a
colon (".") as a pronet and wll accept a succession of commands
directly fromthe user ternminal. Interactive Mdde is useful when the
user nust neke extensive changes to a library, or when the user
wi shes to step through the library checking and/or changi ng nodul es
in an "interactive" manner. Once selected, the Interactive Mde will
remain in effect until the user enters a "quit" or "omt" command.

Conmand File Mdde: One of the commands which the user can specify as
an Interactive code or a Direct Mode command entry is the "Confile"
command. This command instructs the Library Manager to read
subsequent instructions froma command file. When a "Confile"

L.3.2

command is entered, the Library Mnager will read from the file
specified until it reads a "quit" or "omt" conmand or
alternatively, wuntil it reaches the end of the file. when exiting
the Command File Mdde, the Library Mnager will return to whatever
nmode it was in before the Coomand File Mbde was entered. |If the
Command File Mde was entered as the result of a Direct Mde
command, then the Library Manager wll term nate when Command File
Mode is exited. If entered fromthe Interactive Mde, it will return
to the Interactive Mde.

LI BRARY MANAGER COMVANDS

In the descriptions that follow, the commands nay be abbreviated to
the characters shown in capital letters. For sinplicity, the
descriptions are specified in a BNF type form In this formitens
encl osed in angle brackets "<" and ">" represent nanes or nunbers to
be chosen by the user. Itens enclosed in square brackets "[" and "]"
represent optional itens. Anything enclosed in curly brackets "{"
and "}" may be repeated zero or nore tines. These "neta" characters
(ie <>{,},[, and]) are just to help the user understand what is
required and should not actually be typed in. Thus the "del ete"
specification ..

Del et e {<nmodul e>{, <cl ass>])

means that the delete command (which nmay be abbreviated to just "d")
requires zero or nore user-specified nodul e nanes, each of which may
have an optional class specifer which is separated fromthe nodul e
nane by a comm

In the foll ow ng:

<modul e> refers to the nane of a nodule (which should consist
of a series of characters). The first character may
not be a digit.

<file> refers to any legal file or path nane.

<cl ass> is a nunmber fromO to 255 which represents a nodule's
cl ass numnber.

Thus a | egal exanple of the del ete command coul d be:
d nodul ea, 2 nodul eb nodul ec, 0

whi ch woul d cause three nodules to be deleted; the class 2 "nodul ea"
nmodul e, the class O "nodul eb” nodule, and the class 0 "nodul ec”
nodul e.

Add {<fil e>{, <nodul e>f, <cl ass>] }}

The add command is used to add nodules to an existing library or to
create a new library. It consists of the word "add", which nmay be
abbreviated to "a", followed by one or nore fil enanes, each of which
may be followed by zero or nore nodul e specifications, each of which

L.3.3

may include a class specification. It is possible to add nodul es at
a specific place in the library (see the "find", conmand) but for
nmost linking applications it makes no difference where a nodule is
located in the library. In Direct Mbde, the add command will add
nmodul es to the end of a library. In Interactive Mode or Cormand File
Mode, the Library Manager can be directed to add a nodul e anywhere
in alibrary. The argunent to the add command is a fil ename which
should contain at |east one linkable nodule (such as that produced
by a compilation). The filename may be followed by any nunmber of
nmodul e nanes. If there are no specifications following the file
nane, the Library Mnager will attenct to add all of the nodul es
contained in the file. |If specific nodules are naned, the Library
Manager will attenpt to add only those nmodules fromthe nanmed file.
Any nmodule may have an optional class specification, which is a
nuneric specifier in the range of 0 to 255. If the «class
specification is not present, the first nopdule encountered having
the specified nodul e nane, regardless of its class, will be added to
the library; otherwise only a nodule with a matching name and cl ass
will be added. The add conmand will not add any nodul e whose nane
and class match one already existing in the library.

Del et e {<nodul e>{, <cl ass>]}

This command all ows the user to delete nodules froma library. The
del ete command will attenpt to delete the named nodul es, taking into
account the nodule's class, iif it is specified. If the class
specifier is omtted, and there is nore than one nodul e having the
specified nane inthe Ilibrary, the delete command will print a
warning nessage and will not delete the nodule. The user may then
delete the nodule by specifying the class of the nodule which is to
be del et ed.

The delete command will print a warning nessage if no nodule nane is
speci fi ed.

Revl ace {<fil e>{, <nodul e>{, <cl ass>]}}

The replace command is used to replace nodules in an existing
library. It consists of the word "replace", which nmay be abbreviated
to "r" followed by one or nore filenanes, each of which nmay be
followed by zero or nore nodul e specifications, each of which may
include a class specification. The argunent to the replace conmand
is afile name which should contain at |east one |inkable nodul e
(such as that produced by a conpilation). The filenane nmay be
followed by any nunber of nodul e nanes. If there are no nodul e
specifications following the file nane, the Library Manager will
attenpt to replace all of the nodules contained in the file. |If
specific nodules are naned, the Library Manager will attenpt to
replace onlv those nodules. Any nodule may have an optional class
specification. |If the class specification is not present, the first
module with a matching nane, regardless of its class, wll be
replaced in the Ilibrary; otherwise only a nodule wth a matching
nane and class wll be replaced. The replace comand will only
replace a nodule whose nane, or name and class (if both are
specified), match a nodule already in the library.

L.3.4

it

°

This command quits the Library WManager, first saving the library
fileif it has changed. This command nay be abbreviated to "q"
oMT

This command directly exits the Library Manager wi thout saving the
library that was being edited. You nay want to renenber this one in
case you hopelessly nmess up a library file (although that shoul dn't
be cause for panic since the Library Manager always nakes a backup
file). Notice that there is no abbreviation for this conmand.

Li st {<nmodul e>{, <cl ass>}}

The list conmand will print out information an the nanmed nodul es. |f
no nmodul es are specified, the list command wll print out
information on all of the nodules in the library.

SLi st {<nodul e>[, <cl ass>]}

This is a short form of the List command. It prints out an
abbreviated listing containing only the nodule nane, class, and
revision of each naned nodule. |If no nodules are specified, this

information will be printed for all nodules in the library.

Hel p
The help conmand allows the user to obtain on-line help when using
the Library Manager. It assunes there is a help text file avail able.

The help command will print a nenu and request a nunber fromthe
user; it then prints the associated nessage and enters Interactive
Mode.

LOad {<file>}
When anything is done involving a library which is currently not in

menory, it is automatically |oaded. The "load" command nay be used
to explicitly load a library without actually doing anything with
it. Loaded Ilibraries are not the sanme as the Ilibrary vyou are
editing; it is sinply a library whose nobdule information is in
menory. Wen a nodule is from a library, for exanmple, the

modul e information for the entire library is |loaded into nenmory so
that the Library Manager can nore quickly reference it. Before a
file is loaded, the nenory is checked to see if the file has already
been |oaded. A file is never |oaded nore than once. The "I oad"

command nmay be abbreviated to "lo

The reason a user nmay want to load a library explicitly is so the
contents of a loaded Ilibrary may be listed and exam ned using the
| oad-1ist command as descri bed bel ow

LList {<file>}
The LList command allows the user to list a loaded library. Wen

used with a library nane, the LList command will list the contents
of the named library. When specified without any library nane the
LList command will list the nanes of all the currently |oaded
libraries. The "Ilist" command may be abbreviated to "IIl".

L.3.5

SLList {<file>}

This command provides an abbreviated l|oad-listing, including only
the nodule nane, class, and version. When this command is used
without any library name specified, it will list the nanes of al
currently Jloaded libraries. The "sllist" command nay be abreviated
to "slI".

Save {<file>)

The save command will force the Library Manager to save the library
using the filenane indicated by <file> |If no filename is explicitly
specified, the Ilibrary wll be saved using the library nane
originally specified on the conmmand line. As a safety neasure, any
time a file is saved the Library Manager will nake a backup copy of
any file which would have been overwitten by the save process. It
will append a ".bak" extension to this backup file. The Library
Manager wll automatically save the |library whenever the user exits
using a "quit" comand.

Confile {<file>}

This command will direct the Library Manager to execute comuands
read fromone or nore specified files wuntil it reads a "quit" or
"omt" fromthe specified files or, alternatively until the end of
the file is reached. An error nmessage will be printed if no file is
specified. The "confile" command may be abbreviated by "c".

Echo {<any-string>}

This command sinply echos the specifed strings to the terminal. This
command can be useful in a command file to informthe user of its
pr ogr ess.

| NTeractive

This command will explicitly place the Library Manager in
Interactive Mbde. Needless to say, it has no use when already in the
Interactive node, and very |little use as a Direct Mde conmand
(since the user can nore readily enter Interactive Mdde by sinply
not specifing any command whatever when <calling the Library
Manager). It is potentially wuseful in the Comand File Mde
however, and can be included in a command file to force a return to
the interactive Mode. The "interactive" command may be abbrevi ated
as "int".

Fi nd {<nmodul e>{, <cl ass>]}
This command is used to "find' the nodul e whose nanme and class is
gi ven.

There is a pointer in the Library Manager which points to what is
known as the "current” nodule. Wen the Library Manager starts, the
“current" nmodule is the last-occurring mnodule in the library being
edited (assuning there are any nodules in the library being edited).
When an "Add" command is executed for exanple, the newy added
nodul es are added following the "current" nodule. Al nost every
command has sone effect on which particular nodule in the library is
considered as being the "current"” nodule after the commanded action
has been conpl et ed. Fol l owi ng an add command, for instance, the

L.3.6

"current" nmodule will becone the |ast nodul e that was added because
of that add command. The |ist command al so causes the current nodul e
to becone the last nodule that is actually listed. In this nanner,
user command inputs continuously alter which specific nodule is
actually considered the "current”" nodule at any give tine.

The find command can be used to explicitly define the current nodul e
to be any specific nodule in a library. Thus, if the user w shes to
pl ace a module in a specific place within the library, he can "find"
the nodule which is to imediately precede the new nodul e, and then
"add" the new nodule. This will cause the new nodule to be placed
imediately after the nodule that was "found" wusing the find
command; this, of course, would also cause the "current"” nodule to
then becone the newl y added one.

The find command will attenpt to nove the "current” nodul e pointer
to the named nodule. It starts searching fromthe current nodul e and

continues until it reaches the bottomof the file, at which point it
starts searching from the top of the file. It searches in this
manner until it finds the naned nodule, or until it reaches the

original current nodule. If no nodule <class is specified, the find
command will stop at the first nodule it encounters that has the
specified nodule nanme, regardless of its nodule class nunber;
otherwise it will attenpt to find a nodule which has both the nane
and class specified in the find comand.

Print {<nodul e>[, <cl ass>]}

This command causes information to be printed for the naned nodul es.
If no nodules are specified, it wll print information on the
“current" nodul e.

SPrint {<nmodul e>[, <cl ass>]}

This command works just like the Print conmand except it prints an
abbreviated 1isting which includes only the nanme of the nodule, its
class, and its revision.

Insert {<file>{, <nodul e>f,[class>]}}

This command is similar to the "Add" command except, rather than
pl aci ng the named nodul es after the "“current" nmodule, it will place
them proceeding the current nodule in the library. Wen the Insert
function finishes, the last nodule that was inserted then becones
the current nodul e.

St eppi ng Through The Library

When editing a library using the Library Manager, a pointer exists
which indicates the "current" nodule (as was described previously
under the "find" command). This pointer is used as a starting point
for searches when addi ng, exchangi ng, and deleting nodules. 1t also
points to the nodule which will be printed out by a "print" command
when print is used wthout argunents. Myst of the commands affect
the wvalue of this pointer, usually leaving it pointing to the |ast
nmodul e that was referenced. There are several ways for the user to
change the "current"” nodule pointer. One is via the "find" command
(see the Find command, above). For exanple, the follow ng conmand

L.3.7

noves the painter to a nodul e naned "t hing"
find thing

The wuser nmay also nove the current nodule pointer around in a
"relative" fashion by specifing a signed integer on the line. For

exanple, the following will nove the pointer backwards four (4)
nodul es:
-4

By conparison an entry such as:
+2
will nmove the pointer forward two (2) nodul es.

It is also legal to specify one or nore successive nminus ("-")or
plus ("+") signs to indicate the total nunber of nodules to nove
backward or forward. For exanole, a single mnus or plus sign would
nove the pointer backward or forward one nodul e, respectively. Two
mnus or two plus signs will nove the pointer backward or forward
two nodul es respectively (one for each synmbol), and so on. It is
also legal to nove the pointer to a nodule |located an absolute
nunber of nodules fromthe begining of the library; this is done by
entering an unsi gned nunber. For exanple, entering:

12
will nmove the pointer to the twelvth nodule in the library.

Any tine one of these conmmands is executed, the Library Manager will

print the name of the resultant current nodule. |If one of these
commands attenpts to nove the "current nodul e pointer"” above the top
or below the bottomof the library, the Library Manager will print

"TOP" or "BOTTOM' respectively.

CRst ep
Executing this command toggles a flag which, when "on", causes a

carriage return to act like a plus ("+") sign. This then allows a
user to step down through the library, one nodule at a tine, by
simply hitting the carriage return. The CRstep comand toggles this
feature on (if previously off) or off (if previously on) with each
execution. Therefore, if this feature has been previously sel ected
to be "on", it can be selected to be "off" by sinply re-entering the
CRst ep comand once agai n.

QUI ET

This command will prevent the Library Manager fromprinting out the
nane of the current nodul e when the "current nodul e" pointer noving
commands are used. The "quiet" conmand nay be abbreviated by "quie"

Addi ti onal Notes
If the user wishes to wite out a nodule which is in a library, this

L.3.8

can be easily done by a command of the type:

|'i bman newrrod add ol dli b, nod

For the filenanes used in this exanple, this instructs the Library
Manager to neke a new library, called "newntd", which contains a

single nodule, <called "nod", which was obtained from a library
called "oldlib".

L.3.9

L.3.10

APPENDI CES

This section contains mscellaneous reference information which nmay
be useful to the progranmer.

Appendix A Linkable File Format L.A1
Appendi x L* Loaders L.L*. 1

APPENDI X A
LI NKABLE FI LE FORVAT

The following is the linkable file fornmat which is expected by the
Introl Linker and Loader

There is no difference between a library file and a |Iinkabl e object
file as produced by the Assenbler, other than the fact that a
I inkabl e object file contains only a single nodule whereas a library

usual ly contains nultiple nodul es. In the special case of a file
which contains only a single nodule, it is permissible to have a
text size specified as zero even though the text has a non-zero
| engt h. When a multi-byte value is specified, the nost significant

byte is assuned to appear first.

| NTROL LI NKABLE BI NARY FI LE FORVAT

HEADER
2 bytes Magic #
2 bytes Nunber of nodule descriptors in this file
1 byte Checksum of header

MODULE DESCRI PTOR (repeated for each nodul e)
4 bytes Ofset to nodule text in file
4 bytes Size of text (may be zero if

single nodule in this file)

bytes Size of string area

byt e Modul e cl ass

byt e Modul e revi sion

bytes Rel ocatabl e segnment @x sizes

AR RPN

| SF| SE| .. .| S7| S6|...]| SO

Sn is atw bit nmax size specifier
00 one byte nax size
01 - two byte nax size
10 - three byte nmax size
11 - four byte max size

4 bytes Rel ocatabl e segnent size descriptors
| SF| SE| .. .| S7| S6| ... | SO|
Sn is a two bit descriptor size val ue:
00 - no size
01 - one byte size
10 - two byte size
11 - four byte size

{ 0..4 bytes segnent 0 size }
{ 0..4 bytes segnent 1 size }

LA1

{ 0..4 bytes segnent F size }
2 byte synbol count
For each synbol up to synbol count:

2 bytes Ofset of identifier in string area
2 byte Descriptor val ue

| SZ] XXXXX| N| E] | | R| Al SEGM

Sz is the descriptor of the synbol's value
00 - the value is zero
01 - the value follows in one byte
10 - the wvalue follows in two bytes
11 - the value follows in four bytes

is reserved

set if the synbol is an entry point

set if the synbol is absolute

set if the synbol is exported

set is the synbol is inported

(both E and | are set if the synbol

i s undefined segment i nported)

SEGM is the segnent the synbol resides in
non- absol ut e.

—mX>»zZX

{ 0..4 byte synbol value }

The nodul e descriptor string area starts here. The strings in

the string area are null ternminated ASCI|I character strings.
The first string in the string area is the nodul e nane.

PROGRAM TEXT (follows all nobdule descriptors in the file)

The basic text format is:
|CM MODIFY] { O or nore operand bytes }
Cc™M is the two bit command.
MODI FY is 6 bits of conmmand specific info.
code 00 - Special function

| 00| FNCODE| {|function specific operands]|}

FNCODE is a six bit special function code:

0 - end of text
1 - set byte size relocation
2 - set word size relocation

L.A 2

3 -

se

t long size relocation

codes 4-15 are Loader commands

15

-r
-r

eserved
eserved

Mul tiple byte commands
unt is represented in the | ower

The byte
two bits

16
17
18
19
20
24
28

32
33
34

46
47
48
49

63

co
as

00 - the byte count follows in one

01
10
11

r

foll ows:

byt e
- the
- the

oper and
oper and

- the operand

reserved

foll ows
foll ows
foll ows

in

in
in

skip with one byte byte count
skip with two byte byte count
skip with four byte byte count

reserved
reserved
reserved

Segment set conmands

set segnent
set segnent
set segnent

set segnent
set segnent
reserved

eserved

0
1
2

coce 01 - pass absol ute text
| 01| TCOQUNT| | TCOUNT bytes of text|

L. A

3

one bhyte
two bytes
four bytes

TCOUNT - is the nunber of bytes to pass
(1-64). |If TCOUNT == 0 then
byte count is 64.

code 10 - offset relocation command
| 10| Rl X| SEGM |rel ocation size offset|

Rel ocati on is done in the previously
specified relocation size. The result
is the proper relocated datum wth the
base of the given segnent in this nodul e
added to the following offset. |If the
relative bit is set, the result is the
proper relocated datum with the result
being equal to the relocated value m nus
the value of the location counter follow
the rel ocated val ue.

R - set if the relocation is relative
X - is reserved
SEGM - is the segnent # to relocate with

code 11 - synbol rel ocation conmand
| 11| R XX| S| OF | one or two byte synbol #| {]|offset|}

Rel ocati on is done in the previously
specified relocation size. The result
is the proper relocated datum wth the
result being equal to the value of the re-
sol ved synbol plus the optional follow ng
of f set. If the relative bit is set, the
result is the proper relocated datum
with t he result being equal to the
relocated value minus the value of the
| ocation counter follow ng the relocated
val ue.

R - set if the relocation is relative

XX - reserved

S - 0if one byte synbol #, 1 if tw byte sym
OF - size of the foll owi ng offset

00 - zero offset
01 - byte offset
10 - word of fset
11 - long offset

L.A4

APPENDI X LF

FLD LOADER
OPTI ONS AND RUNTI ME ENVI RONVENT

The Introl Loader which generates Flex format output files is called
the "fld" Loader.

The fld Loader is the "standard" Loader that is furnished with the
part nunber FC6809 Introl-C Conpiler and, as such, is the the Loader
normal ly called by the FC6809's Linker when it finishes |inking. The
fld Loader is also optionally available for use with other versions
of Introl-C (ie for Introl-C packages that do not thenselves run
under the Flex operating systen) and, in such cases, is considered
as being an "optional" Loader for these versions. (Refer to the
"-d[<c>]" option discussed in the Linker section of this nmanual.)

The | oader command |ine call for the fld Loader is of the form
fld <filenane> {<options>}

where <filenane> is the nodule to be |oaded and <options> are zero
or nmore fld Loader option specifiers.

The fld Loader expects its input to be a relocatable nodule as

produced by the Introl Linker, with any appl i cabl e "standard
library", references having been being resolved using the FC6809
Standard Library. The fld Loader produces an output that is

compati ble with, and executable under, the Flex operating system
Executable files generated by the fld Loader are characterized by
the filenane extension ".CMD', which the fld Loader automatically
appends to its output file.

Unl ess ot herwi se indicated, the followi ng options for the fld Loader
may be specified on either the Iinker command |ine (the typical case
when the Loader is being automatically called by the Linker) or on
t he | oader conmand line (when the Loader is being called
i ndependently by the user).

OPTI ONS

- a=<sec>: <seg>{, <seg>}
Assign segnent to a section; where <sec> represents a Flex
program segnent which should be either "text", "data", or
"bss", and <seg> is a segnent nunber in the range 0 to 15. This
option allows the wuser to override the default settings for
pl acenent of program segnents.

-c=<file>
Get additional paraneters froma comand file; where <file> is
the command file filenane. This option allows the wuser to

specify an unlimted nunber of paraneters by placing them one
toaline, inthe naned text file.

L.LF. 1

1 s][=<file>]

Produce an output |listing; where the "s" <character 1is an
optional entry, and <file> is an optional filenane. This option
forces the Loader to generate an output l|isting. If the
optional s character is specified, the listing wll contain
synbol information. |If the optional filename specification is

included, the listing will be placed in the naned file.

- 0=<nane>

Set output file nane; where <nane>is to be the nane of the
output file. If this option is onmtted, the output file nane
will be that of the input name. |If no filename extension is
explicitly defined, the default extension ".CMD' wll be
assi gned.

Make an executable file no matter what! This option will cause
the Loader to produce an executable output file even if there
are still unresolved external references. It is not guaranteed
as to what the result will be if the programactually attenpts
to access one of these unresolved itens.

-y[{t]d] b}]=<ori gin>

Set origin; where the "t" or "d" or "b" character is optional
and <origin>is a hexadecimal nunber. This option nay be used

to set the origins of the text, initialized data, and
uninitialized sections of the output file. If not or dor b
character is specified, or if the t character is specified, the
text section wll be placed at the location indicated by

<origin> |If the d character is specified, the initialized data
section wll be placed at the location indicated by <origin>
If the b character is specified, the bss (uninitialized data)

section will be placed at the location indicated by <origin>
if this option is not specifed, the text section will default
be being placed at the zero origin, and wll be imediately
followed by the initialized data section, which wll be

i mediately followed by the uninitialized data section

Zap the input file. This option deletes the input file after
the Loader has finished using it. Wen the Linker autonatically
calls the Loader, the Linker nornmally specifies this -z option
as part of the call to cause the Loader to delete the file
produced by the Linker (ie the internediate ".RL" extension
file) when it is no |onger needed for |oading purposes.

L.LF. 2

RUNTI ME DATA MEMORY MAP

The runtime nenory map shows the layout of the data space which a
program has available during execution. The data appears in two
areas, one of whichis placed toward the low end of nenory and
another which is placed at the high end of nenory (bel ow the Flex
operating system). The heap is placed in the |ow end of nenory and
grows upward by asking the operating system to enlarge its menory
space. The stack is placed in the area at the high end of nenory.

DATA MEMORY MAP

(1 ow nenory)

TEXT SECTI ON Program Text

DATA SECTI ON External and Static area
(initialized)

BSS SECTI ON C(unitialized)

Dynami ¢ Menory Heap

SP -> St ack Area

| ocal variabl es and
subroutine |inkages

Paraneter area

(hi gh menory)

Introl-Cis a registered trademark of Introl Corp
Flex is a trademark of Technical Systems Consultants, Inc.

L.LF. 4

| NDEX

class list, linker 1.3, 1.4, 1.9 linker filenanes 1.8

conmand file, library manager 3.2 linker input files 1.1

command files, library nmanager 3.6 linker listing 1.8

conmand files, linker 1.6 linker operation 1.2

conmand line, linker 1.1 linker options 1.6

conmand |ine, |oader 2.2 linker output files 1.1
conmmands, library manager 3.3 linking, partial 1.3

conpi l er-generated synbols 1.8 listing, linker 1.8

entry point specification 1.7 | oader calls 1.6, 1.8, 2.1
entry point synmbol 1.2 | oader comand line 2.2
filenames, linker 1.8 | oader fil enames 2.2

filenanmes, |oader 2.2 | oader names 2.2

files, library 3.1 | oader options 2.2

input files, linker 1.1 nmodul e cl ass nunmber 1.3

libman 3.1 nam ng synbol, primary function 1.8
library files 3.1 operation, linker 1.2

I'ibrary manager 3.1 options, linker 1.6

library manager call |ine 3.2 options, |oader 2.2

library manager command file 3.2 output files, linker 1.1
library manager command files 3.6 partial linking 1.3

I'ibrary manager commands 3.3 primary function name 1.2
linker class list 1.3. 1.4, 1.9 primary function namng symbol 1.8
Iinker command files 1.6 synbol s, conpiler-generated 1.8

l'inker command line 1.1

I NTROL- ¢/ 6809

C LANGUAGE DEVELCOPMENT SYSTEM

Introl-C/ 6809 is a powerful Clanguage conpiler system that is designed to facilitate the devel opnent of
hi gh-efficiency software for the 6809. The Introl-C package includes a C Conpiler, 6809 Rel ocating Assenbl er,
Li nker, Loader, Library Manager, and Standard Library. It has been in the field since early 1982 and has
gained widespread acceptance anpong users for its reliable and conprehensive support of the C |anguage as well
as its ease of use. Its ability to generate exceptionally conpact, fast executing code has |ong distinguished
the Introl-Cinplenentation as being the nost efficient high Ievel |anguage that is available for the 6809
and has resulted in Introl-Cs w despread use in the industrial comunity for devel opnent of process control
software. Prograns devel oped using Introl-C are typically wthin 15 to 20%or |less of the size and speed of
prograns witten entirely in 6809 assenbler. For the particular case of the Eratosthenes Sieve Benchnmark, the
p/n UCB809 resident Introl-C Conpiler, for exanple, produces a 176 byte conpiled nodule, a total program size
of 2007 bytes, and a program execute tinme of 8 seconds on a 2 Mz 6809.

Code produced under Introl-Cis re-entrant, relocatable, and ROWable and may be installed on any 6809 target,
including ROV based systems. No fees or royalties of any type are inposed on object code prograns devel oped
using the conpiler. Introl-C/6809 is available as resident software for 6809-based hosts running UniFlex,
Flex, or 0S9. Cross-software versions of |Introl-C are available for PDP-11 based hosts running UNI X (or any
of the URI X | ook-alikes such as TNIX, VENIX, etc), PDP-11 based hosts running RSX11M and also for |IBM PC
hosts running PC DOS or MDCS.

Introl-C is designed to the standard C | anguage specification defined by Kernighan & Ritchie and supports all
features of the |anguage except fields, doubles, and the #if and the #l ine preprocessor directives (all
other preprocessor directives, including #i fdef and # fndef, are fully supported). Extensions to the
standard |anguage include provisions to pernmt nesting of coments, use of separate nane spaces for all union
and structure nenber nanes, and provision to allow synbol names up to 90 significant characters in |ength.
Mbst C source prograns devel oped using Introl-C are directly usable as input to standard UNI X C conpil ers.

User interface is designed for case of use pernitting C source files to be converted into executable outputs
with a mninumof effort on the part of the programmer. For exanple, a single comand line entry of the form
icc filename (options]
will cause a Csource file to be fully conpiled and assenbled to produce a relocatable object nodule.
Simlarly, relocatable nodules may be |inked and automatically |oaded to produce an executable output via a
sinmple command line entry of the form
ilink filel [file2 file3 ...] [options]
Nurmer ous options are supported to pernit versatile, user-controlled alteration of the standard conpilation,
assenbly, linking and |oading processes. Option specifications, however, are generally required only for
specialized circunstances since the defaults for unused options are designed to select standard conditions
that "make sense" for the great majority of program devel opment situations.

The C Conpiler is a 4-pass programthat generates an optim zed assenbly |anguage file as its output. In
normal use, the 4 sequential conpilation passes execute automatically and are foll owed by automatic execution
of the included Assenbler, thus resulting in a fully conpiled, fully assenbled relocatable object nodul e as
the result of a typical conpiler call. The internediate assenbly |anguage file generated by the C Conpiler is
available to the user, however. Conpile tine options include capability for the user to selectively place
data of a given type under any of 16 different |location counters (ie "segnents"), ability to generate either
posi tion-dependent or position-independent code and/or data, and capabilities for specifying #define
pre-processor directives directly on the conpiler call line. The 16 Ilocation counters provided by Introl-C,
and the features for generating either position-dependent or position-independent code and data, allow
significant flexibility when finished prograns are to be placed in ROM

The included RO9 Assenbler is a full-featured 6809 Relocating Assenbler. A though noninally furnished to
provide automatic assenbly of the C Conpiler's output, the Assenbler may also be called directly by the user
for converting user-witten assenbler text files into relocatable object nodul es. The Assenbl er supports all
addressing nodes of the 6809, recognizes all standard opcodes, and wll accept arbitrarily conplex
assenbly-type input expressions. A unique feature of the Introl Assenbler is its assignnent of a
user-definable "class" identifier to each nodule it produces which is used (in conbination with the nodule's
nane) for identification purposes by the Linker. This feature allows the user to create (and the Linker to
di stinguish between) nultiple versions of identically-naned C support functions within the Standard Library,
for exanple, and provides the basis for a powerful and convenient link-time capability for tailoring the Iink
process to mnimize runtinme overhead in the final program

The Linker accepts any nunber of relocatable nbdul es as input and produces a single relocatable nodule as its
output. Miltiple-pass linking is supported. The Linker also supports "partial |inking", wherein several
conponent nodul es of an overall programmay be linked together to forma single resultant "partially |inked"
nmodul e which may then be reused as input in subsequent |inking operations. Linked prograns up to 64K in size
may be produced.

Al though a specific host-related Loader is supplied with each Introl-C software package, any of four
different types of Introl Loaders are potentially wusable with any of the Introl-C conpiler systens: a FLD
Loader, which generates a file of output load records in hex format (Mdtorola S Records, Intel Hex, Tektronix
Hex, or Extended Tektronix Hex formats); a ULD Loader, which generates outputs that are executable under
Uni Fl ex; a FLD Loader, which generates outputs executable wunder Flex; and an O.D Loader, which generates
outputs executable under 0S9. The |oader supplied with P/N XC6809, RC6809, and PC6809 cross-software packages
is the HLD Loader; the ULD Loader is supplied with the P/N UC6809 package; the FLD Loader is supplied with
the P/ N FC6809 package; and the OLD Loader is supplied with the PPN 0C6809 package. Any of these several
Loader types, however, is also optionally available, at extra cost, as a "cross-loader" for use with any
resident or cross-software version of Introl-C. The HLD |oader is particularly wuseful when devel oping
sof tware for standal one, ROM based applications.

The Standard Library contains an extensive collection of C programmng support functions, including I1/0 and
arithnmetic functions not directly performed by the 6809. Only those library functions actually required for
program execution are extracted by the Linker, resulting in mninumruntinme overhead in devel oped prograns.
The library furnished with each of the several resident versions of Introl-Cis host-O S.-specific in nature
whereas the library supplied with cross-software versions is operating-systemindependent and is tailored for
use in standal one-target applications. Standard Library source code is available as an extra cost option.

The Library Manager provides convenient and versatile capabilities for adding. deleting. and nodifying
Standard Library functions, thus pernitting unique libraries of C support functions of any type to be created
by the user. Al library functions are stored in linkable format, thus avoi ding any need for reconpiling them
before each use. The Library Manager, in conbination with the Linker, significantly reduces devel opnent tines
for large programs by allow ng individual parts of the program to be independently devel oped and conpil ed
with a mninmmof effort.

TRADEMARKS: Introl-Cis a registered trademark of Introl Corporation; Flex and UniFlex are tradenarks of
Technical Systems Consultants; 0S9 is a trademark of Mcroware Systens; UNIX is a trademark of Bell
Laboratories; TNIX is a trademark of Tektronix Inc; VENIX is a trademark of VenturCom PDP-11 and RSX11l are
trademarks of Digital Equipnent Corp; IBMPCis a trademark of International Business Mchines.

3/1/84

6809 RESI DENT AND CROSS MACRO ASSEMBLERS

Introl's M9 resident and cross macro assenblers are designed to translate MX6809 assenbly | anguage
source programs into 6809 nachine code. All M9 assenbler packages include the Introl M9 Rel ocating
Macro Assenbler, the ILINK Linker, a Loader, and the LIBVAN Library Manager. Resident versions of the
M9 software package are available for use on 6809-based m croconputers running under Uni Flex, Flex, or
0S9. Cross-software versions are available for use on PDP-11 based devel opnent systens running UN X or
RSX-11M and al so for IBM PC hosts runni ng PCDCS.

The Assenbler is a full-featured relocating macro assenbler that accepts a 6809 assenbly | anguage text
file as input and produces a relocatable object file as its output. The included Linker and Loader
permt any nunber of assenbled nodules and/or library nodules to be |inked together and then | oaded to
produce a single resultant output file in an executable format. The Library Manager provi des convenient
and versatile features for the wuser to create, and maintain, libraries of assenbled nodul es. Resident
assenbl er packages incorporate a host-specific Loader (ULD, FLD, or OLD, as applicable) that produces
output files which are executable under the assenbler's host operating system M9 cross-assenbler
packages incorporate a hex-type Loader (HLD) which generates a file of output load records in any of
several hex formats: Mdtorola S Records, Intel Hex, Tektronix Hex, or Extended Tektronix Hex format, at
user option. Introl's HLD, ULD, FLD, and OLD Cross-Loader packages are optionally usable wth any
version of M9, and are available fromlintrol at extra cost. The M9 Macro Assenbler is fully
conpatible, both in source format and object output, with the RO9 Rel ocating Assenbler that is supplied
with the Introl-C/ 6809 C Conpiler system

MD9 supports nacros and conditional assenbly, recognizes the standard opcodes recognized by Mtorol a
assenblers, and supports the conplete instruction set and all addressing nodes of the 6809. The
Assenbl er accepts assenbly type input expressions that are arbitrarily conplex. Parentheses are all owed
in expressions to nodify the evaluation order of operators. Synbols nay be of any length, with the first
100 characters being significant and retained by the assenbler. Assenbly tinme expressions may be used in
the operand of any assenbler opcode or directive. Synbols and constants may be used interchangeably in
an expression. All results of expressions at assenbly time are 32-bit truncated integers.

The follow ng assenbly tine options are supported by the M9 Assenbler:

-a - Place all synbols except those beginning with a "?" character in the object file.
-c - Send Assenbler's output listing to console.
-f - Force listing of all conditionally excluded code.
-i - Include all included files in output |isting.
-j - Include synbols beginning with a "?" character in the output Iisting.
-l=(filenane) - Place output listing in specified file.
-m- Include all macro-expansi on-generated code in the output |isting.
-n - Don't produce an output l|isting.
-0=(filename) - Explicitly assign nane to the relocatable output file.
-p(digit)=(value) - Pass paraneters to nacro program being assenbl ed.
-q=(class) - Assign nuneric class identifier to the rel ocatabl e output nodule.
-s - Suppress listing of the synbol table.
-U - Force all undefined synbols to default to inported synbols.
-X - Don't generate an object nodul e.
-y=(pat hnane) - Search "pathnanme" for macro files after searching current working area.
-z - Delete input file after Assenbler has finished using it.

Assenbly tine expression operators supported:

- unary mnus (twos conpl enent) & bitwi se and
~ not (ones conpl enent) N bitwi se exclusive or
* nultiplication | bitw se inclusive or
[/ division > greater than
% nod (renainder) < less than
+ addition >= greater than or equal to
- subtraction <= | ess than or equal to
<< shift left == equal to
>> shift right = not equal to
Assenbl er directives supported:
comm - Common Area if - Nurmeric Conditional Assenbly
dc - Define Data Constant ifn - Nurmeric Conditional Assenbly
ds - Define Data Storage ifc - String Conpare Conditional Assenbly
el se - Conditional Assenbly Else ifnc - String Non-Conpare Conditional Assenbly
endif - End O Conditional Assenbly inmport - External Synbol Reference
endm - End O Macro Text lib - Load A Disk File
end - End O Assenbly list - Term nate Previous Nolist Directive
equ - Equate Synbol Wth A Val ue loc - Select Location Counter
err - Prograrner-Generated Error macro - Define A Macro
exitm- Exit From Macro nolist - Turn Of The Listing
export - External Synbol Definition of fset - Absolute Offset From An Origin
fcb - Form Constant Byte repeat - Repeat The Next line
fcc - Form Constant Character rnb - Reserve Menory Bytes
fdb - Form Doubl e Byte Constant set - Set Synbol To A Val ue
ident - Identify Mdule syn - Equate Labels
Tr adenar ks: INTROL-C is a registered trademark of Introl Corporation; UniFlex-and Flex are

trademarks of Technical Systens Consultants; 0S9 is a tradenmark of Mcroware Systems; UNIX is a
trademark of Bell Laboratories; PDP-11 and RSX-11M are trademarks of Digital Equipnment; IBM PCis
a trademark of International Business Machines.

3/1/84

INTROL-C PRICE LIST

1- YEAR
MAI NTENANCE
PRI CE DOMESTI ¢/ FOREI GN

PART NO. PRODUCT DESCRI PTI ON

| NTROL- C/ 6809 COWPI LER PACKAGES

(Al R09 Assenbler, |LINK Linker,
conpi l ers include applicable host-conpatible Loader and Standard Library;
HLD Loader and STAO09 Standard Library.

packages incl ude | CC Conpiler, LI BVAN Li brary Manager; resident

cross-conpil ers include

UC6809- UFX09 Resi dent conpil er package for 6809/ Uni Fl ex host $425 $100/ $135
FC6809- FI X09 Resi dent conpil er package for 6809/ Fl ex host $425 $100/ $135
0C6809- 05909 Resi dent conpil er package for 6809/ 059 host $425 $100/ $135
XC6809- UNXI 1 Cross-conpi | er package for POP-11/UN X host $2500 $500/ $550
RC6809- RSXI | Cross-conpi | er package for POP-11/RSX1l M host $2500 $500/ $550
PC6809- PCDOS Cross-conpi | er package for | BM PC/ PCDOS host $750 $200/ $235
VAN- C6809 Manual only (Specify conpiler type) $75 NA
MANEX- C6809 Addi ti onal Manual (Specify conpiler type) $35 NA

LI BRARY SOURCE CODE PACKAGES

UFXOOLS- (*) Sour ce code for UC6809 Standard library $400 $100/ $135
FLX09LS- (*) Source code for FC6809 Standard Library $400 $100/ $135
0S909LS- (*) Source code for 0C6809 Standard library $400 $100/ $135
STAQOLS- (*) Sour ce code for XC6809/ PC6809/ RC6809 (St andal one) Library $400 $100/ $135
(*Note: Specify host OS. format desired; ie whether Uni Flex, Flex, 0S9, UNI X, RSX11M or PC DOS)

CROSS LOADER PACKAGES

(HLD Loaders include STA09 Standal one Library;

HLD- UFXO9
HLD- FLX09
HLO- 0S909

ULD- FLX09
ULD- 0s909
ULD- UNXI 1
ULD- PCDOS
ULD- RSX11

FLD- UFX09
FLD- 05909
FLD- UNXI 1
FLD- PCDOS
FLD- RSX11

OLD- UFX®9
OLD- FLX09
OLD- UNX11
OLD- PCDCS
OLD- RSX11

others inc

| ude targeted-host-conpatible Library)

HLD (hex format output) Loader for UC6809 conpil er

HLD (hex format output) Loader for FC6809 conpil er

HLD (hex format output) Loader for 0C6809 conpil er

ULD (Uni Fl ex fornat output) Cross-|oader for FC6809 conpil er
ULD (Uni Fl ex fornat output) Cross-Loader for 0C6809 conpil er
ULD (Uni Fl ex format output) Cross-Loader for XC6809 conpiler
ULD (Uni Fl ex format output) Cross-Loader for PC6809 conpiler
ULD (Uni Fl ex format output) Cross-Loader for RC6809 conpiler
FLD (Fl ex format output) Cross-Loader for UC6809 conpiler
FLD (Fl ex format output) Cross-Loader for 006809 conpil er
FLD (Fl ex format output) Cross-Loader for XC6809 conpiler
FLO (Fl ex format output) Cross-Loader for PC6809 conpiler
FLO (Fl ex format output) Cross-Loader for RC6809 conpil er
OLD (0s9 format output) Cross-Loader for UC6809 conpil er
OLD (0s9 format output) COross-Loader for FC6809 conpil er
OLD (0s9 format output) Cross-Loader for XC6809 conpil er
OLD (0OS9-format output) Cross-Loader for PC6809 conpiler
OLD (0s9 format output) Oross-Loader for RC6809 conpil er

$150
$150
$150

$150
$150
$300
$225
$300

$150
$150
$300
$225
$300

$150
$150
$300
$225
$300

$30/ $40
$30/ $40
$30/ $40

$30/ $40
$30/ $40
$75/ $90
$50/ $65
$75/ $90

$30/ $40
$30/ $40
$75/ $90
$50/ $65
$75/ $90

$30/ $40
$30/ $40
$75/ $90
$50/ $65
$75/ $90

1- YEAR

MAI NTENANCE
PART NO PRODUCT DESCRI PTI ON PRICE DOMESTI C/ FOREI GN
6809 MACRO RELOCATI NG ASSEMBLER PACKAGES
(Al packages include M9 Macro Rel ocating Assenbler, |LINK Linker and LI BVAN Li brary Manager;
resi dent assenbl ers include host-conpatible Loader; cross-assenblers include HLD Loader.)
MD9- UFXO9 6809 Macro Rel ocating Assenbl er (UniFlex-09 host) $250 $65/ $80
MD9- FLX09 6809 Macro Rel ocating Assenbl er (Flex-09 host) $250 $65/ $80
MD9- OS909 6809 Macro Rel ocating Assenbl er (0S9-09 host) $250 $65/ $80
MD9- UNX11 6809 Macro Rel ocating Cross-Assenbl er (PDP-11/UNI X host) $1200 $250/ $300
MD9- RSX11 6809 Macro Rel ocating Cross-Assenbl er (PDP-11/RSX11M host) $1200 $250/ $300
MD9- PCDOS 6809 Macro Rel ocating Cross-Assenbler (1BM PC/ PC DOS host) $375 $100/ $135
MVAN- MCO Manual only (Specify Macro Assenbl er type) $35 NA
MANEX- M9 Addi ti onal Manual (Specify Macro Assenbl er type) $20 NA

ORDERI NG | NFORVATI ON

Introl software is available on the follow ng floppy disk fornmats:

Uni Flex formats: 8" SSSD 77 track

Flex formats: 8" SSSD 77 track; 5" DSDD 40 track; 5" SSSD 35 track
0S9 formats: 8" SSSD 77 track; 5" DSDD 40 track; 5" SSSD 40 tratk
PDP- 11/ UNI X formats: 8" RX01 Tar; 8" RX02 Tar; 8" Tektronix Tar
PDP- 111 RSX11M formats: 8" RT-11

I BM PC/ PC DOS fornats: 5" DSDD

Al prices are F.OB. MIlwaukee, Wsconsin. U S. A Prices and product specifications are subject
to change without notice. Al orders nust be prepaid in US. funds drawn on a US. bank or
shipped C.OD WVISA and Master Card accepted. End users in Wsconsin, please add applicable
Wsconsin State Sales Taxes. Al donmestic orders should include $10.00 shipping and handling,
$25.00 for all overseas orders

Prices shown are for single-CPU use |icenses. Site licensing and CEMlicensing is also available.

An Introl Binary Software |icense Agreenent nust be conpleted and returned to Introl Corporation
prior to software delivery.

Trademar ks: Introl-C is a registered trademark of Introl Corporation; UniFlex and Flex are
trademarks of Technical Systens Consultants; 059 is a trademark of Mcroware Systens; UNNX is a
trademark of Bell Laboratories; IBMPC is a trademark of International Business Machines; PDP-11,

RSX11, and RT-11 are tradenmarks of Digital Equipment Corp.

| NTROL CORPORATI ON
647 West Virginia Street *** M| waukee, Wsconsin 53204
Tel ephone (414) 276-2937

3/1/84

STA09 UFXCO FLX09 (©S909

LI B.

LI B. LIB

LI B.

| NTROL- C/ 6809 STANDARD LI BRARI ES

(Representative Support Functions Provided)

FUNCTI ON

DESCRI PTI ON

abs
access
acct

al arm
al | oc
at of
ata

ato

br k
cf or kf
chain
chdir
chrod
chown
cl ose
cprep
crc
creat
cstart
dup
dup2
ecvt
execl
execv
exit
_exit
_extend
fclose
fcvt

f dopen
fflush
fgets

f dopen
fork
fprintf
fputs
free

f scanf
fseek

f stat
ftel
ftinme
getc
get char
getegid
geteuid
getgid
getpid
gets
get st at
getuid
gtty

i ndex

i ntercept
ioctl

i sal pha
isatty
i sdigit
i sl owner
i sspace
i supper
itoa
ki ll
I'i nk

| ongj np
| seek
mal | oc
max
mn

i nteger absol ute val ue

determ ne accessability of file
turn accounting on/of f

send al arm signal after specified tine
al | ocate nenory

convert string to float

convert string to integer

convert strin to long

change core allocation

fork off a program

chain a new executabl e nodule froma C program
change default directory

change file access perm ssion
change the owner of a file

close a file

prepare environnent for a C program
cycl e redundancy count

create a file

runtine preparation routine
duplicate an open file descriptor
duplicate an open file descriptor
float to string conversion
execute a program

execute a program

exit a programwith file cleanup
exit a programwi thout file cleanup
extend fl oat

close file

float to string conversion

open a file

flush file buffer

read file into string

open a file

spawn a new process

formatted out put Conversion

wite a string to a file

free nmenory

formatted i nput conversion

seek to position in a stream

get file status of open file

tell the current positionin afile
current tine

get next character froma file
get a character fromthe standard input
get effective group user id

get effective tiser id

get group user id

get process id

read input into string

get status of file or device id
get user

get status of file or device

find first occurrence of character
intercept signals

control device

test for al pha character

test for terminal

test for digit

test for |ower case

test for white space

test for upper case

convert integer to ASCI| string
send a signal to a process

link to a file

non-| ocal goto

seek to a position in a file

al | ocate nmenory

return the maxi mrum of two val ues
return the mnimumof two val ues

I NTROL- C/ 6809 STANDARD LI BRARI ES (cont'd)

STA09 UFXCO FLX09 (0S909
LI B. LI B. LI B. LI B. FUNCTI ON DESCRI PTI ON

...... X.................. nknod make special file or directory

X . X.... X.... X.... nodf return fractional part of a float
...... X ount mount a file sub-system

X . X.... X.... X.... nmovnem copy a block of menmory fromone |ocation to another
...... X.................. nice change programopriority

...... X........... X.... open open a file

...... X pause stop until signal

...... X perror print error nmessage

...... X pipe create an inter-process channe
XL X.... X.... X.... printf formatted output conversion
....... X .o o oo profil profile a process

...... X ptrace process trace

X . X ... X putc wite a character to a file

X . X X X putchar wite a character to the standard input
X X X . puts wite a string to standard out put
...... X oo o000 X read read froma file
.................... X . readl n read a line froma file

X . X . X . X . reverse reverse a string in place

...... X . X . X . rew nd reset specified file to begi nning
X . X . X . X . ri ndex find last occurrence of character
X . X . X . X . sbrk al | ocate menory

X . X . X . X . scanf formatted i nput conversion
.................... X send send a signal to a process

...... X ..o oo, setgid set group user id

X.o.o.. X.o.o..o Xoo.. X.... setjnp non-| ocal goto
.................... X setstat set status of file or device
...... X setuid set the effective user id

...... X . oo oo, signal catch or ignore signals

...... X.oo......... X.... sleep suspend execution of process

X . X . X.... X.... sprintf formatted output conversion

X . X.oo.. X, sscanf formatted string conversion
...... X oo ... stat get file status

...... X oo oo ... stine set the systemtinme and date

X . X . X . X strcat copy string

X . X . X . X strcnp conpare strings |exicographically
X . X . X . X strcpy copy string

X . X . X . X strlen return string length

X . X . X . X strncat copy string

X . X . X . X strncnp conpare strings |exicographically
X . X . X . X strncpy copy string

X . X.... X.... X.... strsave save string in menory

...... D G -1 1 get status of file or device
...... X 8sync update all disks

...... X syscall C systemcall interface

...... X system run a comrand string

...... X oo .00 X tell return the current file position
...... X oo o000 Xooo. tine return the systemtine

...... X .o ... tines get process tines

X.... X X X t ol ower convert to | ower case

X.... X X X.... toupper convert to upper case

X.... X X.... X.... uldiv unsi gned | ong integer divide
X.... X X X ul nod unsi gned | ong nodul o operation
X.oo.o.o X0 Xoooo X0 ulmul unsigned long multiply

...... X unask set the default file access bits
...... X oo o unount unnount a file sub-system

X.... X.... X.... X.... _unext unextend fl oat

...... X.... X.... X.... ungetc push character back on input stream
...... X X.... X.... unlink delete file

...... X X oo o wait wait for child process to terminate
...... X.o... X.... X.... wite wite to a file
.................... X witeln wite aline to a file

NOTE: The STA09 Library is included with cross-conpiler packages and with HLD cross-| oader packages; the
UNXO®9 Library with UC6809 conpilers and with ULD cross-1oader packages; the FLX09 Library with FC6809
conpilers and with FLD cross-|oader packages; the OS909 Library with 0C6809 conpilers and with OLD
cross-| oader packages

Introl Corporation * 647 W Virginia St. * MIwaukee, Wsconsin 53204 U S. A
Tel ephone (414) 276-2937

I NTROL- C Bl NARY SOFTWARE LI CENSE AGREEMENT
(Wt hout Maintenance Option)

Introl Corp, (hereinafter called Licensor), for and in consideration of the terns and conditions set forth
herein, and for a one-tine license fee, hereby grants to Licensee, and Licensee accepts a personal,
non-exclusive, non-transferrable license to use the binary software prograns named below (hereinafter
referred to as Licensed Prograns) subject to the followi ng terns and conditions:

DEFI NI TI ONS: "Devel oped Prograns" neans any conpiled or assenbled programcreated by Licensee through use of
the Licensed Progranms, including the object code generated by the Runtine Library which is supplied as part
of the Licensed Prograns.

LI CENSE: The Licensed Prograns are supplied by Licensor solely for Licensee's internal business use on a
single Designated CPU, identified below This wuse includes the right for Licensee to construct Devel oped
Programs using the Licensed Progranms, and to sell, give away, or otherwise distribute the object code
generated by the Runtine Library in creating these Devel oped Proarans. Except as provided in the precedi ng
sentence, all right, title, and interest in and to the Licensed Prograns and all related materials, including
all source code furnished by Licensor with the Licensed Prograns, renmins the sole and exclusive property of
Li censor. Neither this Agreenent, the Licensed Prograns, or any portions thereof, nay be sold, |eased,
assigned, sub-licensed, or otherwise transferred by Licensee, except as expressly provided herein, wthout
prior witten consent of Licensor.

TERM This License shall begin on the date hereof and shall remain in effect only as |ong and during such
period as Licensee conplies with the ternms and conditions specified in this Agreenent. This License Agreenent
may be terminated by Licensor if Licensee fails to conply with any terns or conditions specified herein. This
Li cense Agreenent shall autonatically term nate upon any act of bankruptcy by or against Licensee, upon any
assignnent for the benefit, of creditors of the Licensee, upon any attachnment, execution of judgenent or
process agai nst Licensee or its assets, or upon dissolution of Licensee.

LIMTED PERM SSION TO COPY LI CENSED PROGRAMS: Licensee shall not copy, in whole or in part, any Licensed
Programs which are provided by Licensor in nachine readable formexcept for use by Licensee on the Designated
CPU or for backup or archival purposes. This applies to copies in any formand generated by any neans.
Licensee shall maintain appropriate records of the nunber and location of all copies of the Licensed
Programs, or portions thereof, and shall make these records available to Licensor upon request thereof. The
original and any copy of the Licensed Prograns, in whole or in part, shall at all times be the sole and
exclusive property of Licensor. Licensee shall reproduce the follow ng copyright notice on all copies of the
Licensed Programs, in whole or in part, in any form "Copyright 1983 by Introl Corp. Reproduction or
publication in any formprohibited. Property of Introl Corp.". Use of the copyright notice is not to inply
that the Licensed Prograns have been published.

PROTECTI ON AND SECURI TY: Licensee small not cause or permit disclosure of any Licensed Progranms, in whole or
in part, in any form to any person other than Licensee's or Licensor's enployees wthout prior witten
consent of Licensor. Licensee shall take all reasonable steps to safeguard the Licensed Prograns so as to
ensure that no unauthorized person has access to them and that no unauthorized copies, in whole or in part,
in any form shall be nade. Licensee expressly acknow edges that the Licensed Progranms are confidential and
proprietary property of Licensor and agrees to receive and maintain same as a confidential disclosure.
Licensee further expressly acknow edges that unauthorized copying, use, or disclosure of the Licensed
prograns, in whole or in part, in any form does great danage to Licensor and seriously inpairs Licensor's
ability to do business.

TERM NATION: Wthin thirty (30) days of termnation of this Agreenent for any reason, Licensee shall, at
Li censee's option, either (a) return to Licensor all existing copies, in whole or in part, and their rel ated
materials, or (b) furnish to Licensor evidence satisfactory to Licensor that the original and all copies of
the Licensed Programs, in whole or in part and in any form have been destroyed.

DI SCLAI MER OF WARRANTY: Licensor nakes no warranties wth respect to the |icensed Prograns. The |icensed
Prograns are licensed "as is' by Licensor, wthout warranty, and Licensor shall have no liability or
responsibility to Licensee or any other person or entity with respect to any liability, |oss, or damage
caused or alleged to be caused directly or indirectly by the Licensed Prograns.

LIMTATION OF LIABILITY: THE FOREGO NG WARRANTY IS IN LIEU OF ALL OTHER WARRANTI ES, EXPRESS OR | MPLI ED,
I NCLUDI NG BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.
LI CENSEE FURTHER AGREES THAT LI CENSOR SHALL NOT BE LI ABLE FOR ANY LOST PROFITS, OR FOR ANY CLAI M OR DEMAND
AGAI NST LI CENSEE BY ANY OTHER PARTY, EXCEPT AS PROVI DED HEREI N. I'N NO EVENT SHALL LICENSOR BE LI ABLE FOR
CONSEQUENTI AL DAVAGES, EVEN | F LI CENSOCR HAS BEEN ADVI SED OF, THE POSSI BI LI TY OF SUCH DAMAGES.

pg. 2

M SCELLANEQUS: This Agreenment constitutes the entire agreenent between Licensor and Licensee and supersedes

all prior agreements and representations. Li censee agrees to hold Licensor harnmless on all liability
associated with Licensee's breach of this Agreement including, but not linmted to, all reasonable attorney's
fees. This Agreenent shall be governed by the laws of the State of Wsconsin in the United States of Anerica

and Licensee expressly subnmits to jurisdiction therein by process served by mail on Licensee at its bel ow
busi ness address. Licensee agrees to advise Licensor of all changes in Licensee's address. Licensor's main
address is given below |If any provisions of this Agreenment, or portions thereof, are invalid under any

applicable statute or rule of law, they are to that extent deemed to be onitted. The signing of this
Agreement constitutes acceptance of the terns of this Agreenent. No provision in correspondence or on
Purchase Orders shall in any way nodify this Agreenent. Li censor represents that it has sufficient right,

title, and interest in and to the Licensed Prograns to nake this Agreenent wth Licensee.

Li censee Nane:

Nor mal Busi ness Address of Licensee:

Country:

Phone:

Li censed Program Nane: SI'N

Pur chased From

DESI GNATED CPU:

M gr: Mobdel # S/'N

LI CENSEE SI GNATURE:

Nanme And Title:

Dat e:

* kK k k Kk Kk Kk Kk Kk Kk k k Kk Kk Kk Kk *k *k *k *k *k Kk * Kk Kk Kk *k *k *k *k Kk Kk Kk *k *k *k *k *k Kk Kk * *k *k *x *k *k * * * * *

I NTROL CORP. * 647 West Virginia Street * MIwaukee, Wsconsin 53204 U S. A
Tel ephone: (414) 276-2937

kkkxkkkkxx* | CC COVP| LER ******x*xx

-a[t]d]b]s)=(loc) - Place '"text', 'data', 'bss', or 'string' type data under (loc) |ocation counter
-b=(directory) - Find current and subsequent C Conpiler passes in (directory) |ocation.

-Cc - Override default condition with respect to generation of position dependent/independent code.

-d - Override default condition with respect to generation of position dependent/independent data.
-g(c) - use alternate version of preprocessor pass for conpilation (RC6809 and 006809 conpilers only).
-i=(directory) - Search (directory) location for # nclude files.

-k - Display progress of conpilation/assenbly sequence on consol e.

-m(nanme) [=(string)] - Define (name) in preprocessor, with value (string) optionally assigned to (nane).
-n - Inhibit execution of next conpiler pass in the conpilation sequence.

-r - Save C Conpiler's internedi ate assenbly | anguage output file.

- Disallow nested conments.

=(size) - Set maxi mumsize of triple buffer.

-t=(directory) - Place C Conpiler's tenporary files in (directory) location.

-y=[=(n)] - Strip all identifiers to a maxinumlength of (n) characters.

- z Interpret "\n" (newine) characters as being carriage returns.

Cp
lo |o

*xxxxkxxxxx ROQ RELOCATI NG ASSENBLER ****** % x*%x

-a - Place all synbols except those beginning with a "?' character in the object file.
-C - Send Assembler's output listing to console.

-i - Include all included files in output |isting.

-j - Include synbols beginning with a "?" character in the synbol table listing.
-l=(filenane) - Place output listing in specified file.

-n - Do not produce an output |isting.

-o=(filenane)- Assign nane to Assenbler's relocatable output nodule.
-g=(class) - Assign nuneric class identifier (0 through 255) to relocatable output nodule.

-s - Suppress listing of the synbol table.

-u - Force all undefined synbols to default to inported synbols.
-x - Don't generate an object nodul e.

-z - Delete input file when Assenbler has finished using it.

Fxkkxkxkkxkkx | | NK L] NKER ****x**xkkxshkhskxhnx

-b- Do not search the default Standard Library.
-c=(file) - Get additional link-tine parameters from command file.

-d[(c)] - Call optional cross-loader naned "(c)LD' when Linker finishes.
-e=(synbol) - Set entry point.

-f(string) - Search additional Standard Library named "lib(string).R'

-1 [s][x][ul[=(file)] - Produce a linker output listing.

-ne(synbol) - Define primary function naning synbol .

-n - Inhibit Linker fromautomatically calling Loader.

-o=(file) - Assign nane to output file.

-p[(c)] - Pipe Linker's output to |oader.
- Save Linker's output file (during automatic |ink-and-Ioad operations).

-r
-s - Strip output file of all non-entry-defined synbols.
-t=(classlist) - Use (classlist) classes of nodul es during |inking process, if they are avail able.

khkkhkkkkkkkkkkk HLD LmDER khkkkkkkkhkkhkkkkk
-a=(seq); (placernent)[, (seq); (placenent)] - Set segnment nenory bound (segnent may begin, or end, at a
specific nenory |location, or specified to imediately follow, or inmmediately precede, another segnent).
-c=(file) - Cet additional parameters from command file.
-g=(type) - Set output format (Mdtorola S Record, Intel Hex, Tek Hex, or Extendend Tek hex format).
-h - Define ECL character to be carriage return (rather than new ine character).
-1[s][=(file)] - Produce a Loader output |isting.
-0=(nane) - Assign nane to output file.

-u=(seq) - Place uninitialized data in specified segnent.
-v[(char)] - Mdify Loader's synbol changing procedures for synbols beginning wth non-al pha characters.

-w - Produce executable output file no nutter what.
-X (type):(ext) - Set output filename extension for specified type of hex output fornmat.
-z - Delete loader's input file when Loader has finished using it.

khkkkkkkkkkkkkx ULD LMER khkkkkkkkkkkk
-a=(sec):(seg)[,(seg)] - Assign location counter segnment to Uni Fl ex program section (text, data. or bss).
-c=(file) - Cet additional parameters from command file.
-I[s][=(file)] - Cenerate |oader output |isting.
-0-(nane) - Assign nane to output file.
-v=(size) - Set stack section size.

-w - Produce an executable output file no matter what.

-x[=(pagesi ze)] - Produce output file in Uni Fl ex segmented fornmat.
-y=(origin) - Set text section origin at specified |ocation.
-z - Delete Loader's input file when Loader has finished using it.

kxkkxkkxkxxkxx LD LOADER *****x**xkkxkxx

-a=(sec):(Seg)[,(seg)] - Assign a location counter segnent to a Flex program section (text, data, or bss).
-c=(file) - Cet additional parameters from command file.
-I[S][=(file)] - Produce an output |isting.

-0=(nane) - Assign nane to output file.
-w - Generate executable output file no matter what.

-y[t]d]b]]=(origin) - Set origin for text, data, or unitialized section of output file.
-z - Delete input file after Loader has finished using it.

khkkhkkkkkkhkkk (lD LmuER khkkkkkkhkkkkkk
-a=(sec):(seg)[,(seg)] - Assign a location counter segnent to an OS9 program section (text, data, or bss)
-c=(file) - Cet additional parameters from comrmand file.
-I[s][=(file)] - Produce an output |isting.
-0=(nane) - Assign nane to output file.
-V=(size) - Set stack section size.
-w - Generate an executable output file no matter what.
-X - Place executable program nodule and data initialization information nodule in separate files.

-z - Delete the input file after the Loader has finished using it.

Khkhkrkkhkhkkkkkk LI BMAN LI BRARY MANAGER COVIVANDS **** %% % %% % % %

a (file),(nodule)[,(class)] - Add nodule to library; create new library.

d (nodule)[,(class)] - Delete nmodule fromlibrary.

r (file),(mdule)[,(class)] - Replace nodule in library.

q - Quit Library Manager 7after saving library file being edited).

omt - Exit Library Manager (w thout saving edited file).

| (nodule)[, (class)] - List information on naned file.

sl (module)[,(class)] - List abbreviated informati on on naned file.

h - Provide on-line help.

lo (file) - Explicitly load a library file.

Il (file) - List a loaded library.

sll (file) - Provide abbreviated listing of a |oaded library.

s (file) - Save library using the filename indicated by (file).

c (file) - Get additional commands from named command file.

e (strings) - Echo specified strings to the termnal.

f (rmodule)[, (class)] - Find naned nodul e.

p (module)[, (class)] - Print information for naned nodul e.

sp (module)[,(class)] - Print abbreviated listing of infornation for naned nodul e.
i (file),(mdule)[,(dass)] - Insert named nodule in library so it precedes current nodul e.

| NTROL CORPORATI ON
647 West Virginia Street ** M| waukee, Wsconsin 53204 U. S. A
Tel ephone (414) 276-2937

	REF
	LIB
	LOAD
	INT4

