0OS-9 Editor/Assembler/
Debugger Manual

OS-9 Editor/Assembler/Debugger Manual
Copyright © 1980, 1984 Microware Systems Corporation.

All rights reserved.

This document and the software it describes are copyrighted products of Microware Systems Corporation. Reproduction by any means is
strictly prohibited except by prior written permission from Microware Systems Corporation.

Theinformation contained hereinisbelieved to be accurate as of the date of publication, however Microwarewill not beliablefor any damages,
including indirect or consequential, resulting from reliance upon the software or this documentation.

R I o o T 1

1.1. Introduction to the Macro Text EAItOrccuoveiiiiiiiiiii e 1
I T 1] o TS = (= o P 1
1.3. The Edit Command LinNecooiiiiiiiici e e 1
O o TN ST 1= PP 2
ST o T o1 1 (= P 2
1.6. ENtering COMIMANGSuuiiiiiiiiieeiii e e e e e e e e e et e et e et e e e e e e eeanns 2
R = = 10 01 (= PRSPPI 3
1.7.1. NUMENIC PalramMEtErSucvvieiiieeiiieeee e e e e e e e e e e et e et e e et e e e e eaanaees 3
1.7.2. SHNQ ParaMELErS .. .couu it e e e e e e e e eaens 3
1.7.3. MUItIPIE Parameters ... covv e e e e e e e 4
1.8, SYNLaX NOLAION ..uieii e e e e e e e e e e et e et e e aaeeeens 4
1.9, BASIC COMMANGS .. .cuuuiiiiiieii et et e e e e e e e e e e e e e e et e e e e e e e e e et e e et e esanaeeees 4
1.9.1. Change StNQ .ovuuiii e e e e e e e e e e e aaaas 5
1.9.2. DElEte CharaClerSciiiiiii e e e e e eans 5
R B = 1= (S I =N 5
I B 4 = oo I = 6
1.9.5. UNEXtend LiNEcooiiiii e e 6
19,6, INSEIT LINE c.uniiiiii e e e e e e e 6
A S = 1 oo PN 7
1.9.8. List FOHOWING LINES ...couiiiiiiiii et e e e 7
1.9.9. LiSt PrevioUuS LINESc.uiiiiieii et e e e e e 7
1.9.10. MeMOrY SIZE AGJUSEcevniiii e e e e e e e e 7
1.9.11. Memory SIZE€ DISPlayocevnieiiieiie e 8
1.9.12. Move Characters BaCkwardccociuuiiiiiiiiiiiieii e e 8
1.9.13. Move Characters FOrwardc.cooveiiiiiiiiiciie e 8
1.9.14. MoVe TO ENA OF TEXE ...cvvnieiiiciiicce e e 9
1.9.15. Move To Next Line And Displaycoovveiiiiiiiiiiiie e, 9
1.9.16. MoVEe TO Start Of TEXE ...vvuivieiiiiiice e e 9
1.9.17. MoVe LineS BaCKWardSviiuiiiiiiieiiie i e e e e e e 9
1.9.18. MOVE LiNES FOIWardccvvnieiiiiiii e 10
1.9.29. QUIT EQITON ..uuiiiiiiieee e 10
1.9.20. SEarCh FOr StMNQ ..ovvuiiiiieiie e e e e e e e e 10
1.9.21. Set ANChor COIUMNuuiiii e 11
1.9.22. Shell CommMaNdcovuiiiiieie e 11
I 12 R I |« I PSSP 11
1.9.24. Verify OnfOFf .oouuiiiii e 12
1.10. Advanced COMMANGASc.uueiiiieiieeei e e e et e e e e e e et e e et e e et e e e e eeaneenen 12
1.11. File Manipulation COMMEANASeiiuuiiiiieiiie e ee e e e e e e e eaaaeees 12
0 0 O AN SRR 12
0 @ = T o 1 T = 13
1.11.3. Create OULPUL FIlEiiii e e 13
1.11.4. Read From INPUL FilEovvnii e 14
1.11.5. Write TO OUPUL FilE . .cevncee e 14
1.12. Buffer Manipulation CoOmMMmMandsSoveiuuieiiieiiiieci e 14
1.12.1. Display Buffer And Macro DIr€CtOrycc.oveveuneiiiiieiiiiceiieecieeiee e, 14
1.12.2. Change and/or Create Primary Edit BUfferc.ccooveiiiiiiin i, 14
1.12.3. Move Lines From Primary BUffercc.oocoiiiiiii i, 15
1.12.4. Move Lines To Primary BUffercoooviiiiiiiiii e, 15
1.13. Looping ANd ConditioNalSviiuiiiiiiieiie e 15
00 350 O o o o1 o [P 16
1.13.2. The Fall FIAQ c.vvnieieiiieee e e e e 16
1.13.3. Conditional StAEMENTScvuieiieiie e e e e e e e e e 16
1.14. Testing COMMENGScvvneiiiie e e e e e e e e e et e e e ra e eanas 17
1.14.1. Test FOr End of File ..ccouiiieii e 17
1.14.2. Test For Not ENd Of Fileoiivniiii e 17
1.14.3. Test For End of BUFfErocvvniiiiic e 17
1.14.4. Test For Not End Of BUFFErccoiviiiiiiiii e 17

0OS-9 Editor/Assembler/

Debugger Manual

1.14.5. Test FOr ENd OF LiNE ...ccuuiiiiiiieiiii e 17
1.14.6. Test For Not ENd Of LiNEoccvvniiiiiiiieiiiii e 17
L1147, TESE FOU ZEIO ..t e e e 17
N R 1= o S - PP 18
1.14.9. Test FOr String MatChcouviiiiicii e 18
1.14.10. Test For String MiSMaEChooiiiiiiiiiiciii e 18
I O (] AN o N O = P 18
1.24.22. EXit AN Fail cooevnii e 18

R T 1Y =T S U TPP 18
1.15.1. MBCIO HEBOEN'Svvieeiii e 18
1.15.2. Parameters and Variablesocuoiiiiiiiiiiiii e 19
1.15.3. Creating and Editing MaCroScccveiiuiiiiiiieiie e 20

1.16. MACrO COMIMANGSceevvtiieeeiiii e et e et e e e et e e et e e e et s e e e e e e e e et e e e e enen s 20
L1.16.1. COMMENLE ..eeteeeet et e e e e e et e et e e n e en e e e e e e eneees 20
1.16.2. Load Macros From Fileuuiiiiiiiiieccis e 20
1.16.3. SAVE IMBEIOS ...eeeeieeee ettt et et e 21
1.16.4. DEIEIE MBCIO ..vuuieeiiiii ettt e e e et e et eeeaaanaeeees 21

2. ASSEMIBIEN .o 23
b5 O [i o o [0 o 1o o PSP 23
P [01 7 | = o) o USRI 23
2.3. Assembly Language Program Developmentcoovviiiiiiiiiiiiiin e 23
2.4, Operational MOOEScovuiiiiie e e e 24
2.5. RUNNING the ASSEMBIErooiii e e 24
2.6. Source Program Format and SYNEaXceeeuueeiiieiiiieeineeiiiieeieeeieeeeineeeaeesanas 26
2.6.1. Assembler SOUCE FIlEScouuuiiiiiiiie e e 26
2.6.2. Source Statement FIEldSooevviiiiiiii 26

A R (o 1= Yo 27
270, OPEIANGS . .ovueeii et e e 27
2.7.2. Arithmetic and LogiCal OPEratorsccuuveiuiieeiiieeiiiieiiieeeiiee e e e saeeaines 28
2.7.3. SYMBOIIC NAMESvi i e 29
2.7.4. Instruction Addressing MOEScoivviiiiiieiie e, 29
2.7.5. Overview of Indexed Addressing MOdEScccuviviiiiiiiiciie e, 32

2.8. Assembler DireCtive StateMENTSeiieiii e e e e e eeaees 34
S = D IS - 1= 01 | P 34
2.8.2. EQU and SET StalEMENESuiveniiii e e e et e e e e een 34
2.8.3. FCB and FDB StatemMeNtsSoeevivinieeeiiiiieeeiiiieeeeeii e eean e e et eeeaee s 35
2.8.4. FCC and FCS SEAEIMENESeveerieeiiiiiieeeiii e e et e e et e e e e e eeai e eeeens 35
2.85. IF, ELSE, and ENDC SatemMentSuvevieiinieiiiiiiieeeiineeeeeiinneeeiin e eennens 36
2.8.6. MOD and EMOD SEatEMENEScevvuieiiiiiiieeiiiiieeeeeiine e et eeeeaii e eeeieneeeeees 37
2.8.7. NAM and TTL SEEEMENESiieiiiieeiiiieee et e et e e e e e e e e eeees 39
2.8.8. OPT SEALEIMENLuuieiiiiiieeeiiie ettt e et e e et e e et e e e e e e eaen s 39
R R R O S IS - 1= 011 0| S 40
2.8.10. ORG SEAEMENE .. eeiviiieieiii e e et e e et e e et e e e ert e e eeaenaeeaees 40
2.8.11. PAG and SPC StaemMENtSccvvuiiiiiiiieeiiii et e 41
2.8.12. SETDP SEAEMENE ...uiiiiiiiee it e et e e e e e et eeeaen s 41
2.8.13. USE SEEMENL ...ttt e e 41

2.9. Assembly Language Programming TeChNiqUEScoeeviiiiii i, 41
2.9.1. Program Sections and Data SECHIONSocvvviiiiiiiiiiiiceie e 42
2.9.2. Program AT ...t 42
2.9.3. Writing Position Independent Codeoevvviiiiiieiiii i 42
2.9.4. AcCeSSING The DAl ATEacvvuiiiii et e e 43
2.9.5. Additional COMIMENLSccvvviieiiiiie e e e 44

2.10. USING the DEFS FlES ...uuiii i e e 44
2.10.1. The OSODESS FIlE ..covvuieiiiiii e 45
2.10.2. The SCFDEfS FIlE ..ccvuiieiiiii e e 48
2.10.3. The RBFDEfS FIlE ...uuuiiiiiiiiieei e 48
2.10.4. The SYSTYPE File ...ceriii e 50

I 110 = o AV ST 1= 0 o o P 51

0OS-9 Editor/Assembler/

Debugger Manual

130 I [oo [0 1o o PP 51

30 I 1 0= = 1 = o PP 51

3.1.2. Cdling the Interactive DEDUGOEScovviiiiiiiiie e 51

T RGN 2 7= S Tl 000 0= o/ (=P 51

G (o === o 51
2.1, CONSLANS ... eeeeeeeee et et eas 52

3.2.2. SPECIAl NAIMIES ... ceiiiii e e e e e e e e e aaaas 52

3.2.3. REGISLEr NAIMES .. civniiii e e e e e e e e aaas 52

I @0 < - o] = T PSPPSR 53

3.2.5. INAIreCt AdAreSSINGcvvveiie e e 53

3.2.6. FOrmMIiNG EXPrESSIONS ... c.uuiiiiieiiiieiiii e e ee s e e e e et s e et e e et e e st e e e eaneees 53

ICRCT D= o 18 o J @] 1010 1 7= 0 TP 54
3.3.1. Calculator COMMENGuuuieiiiiiiieeiiiiee et e e e eeeeri e e eean e eene 54

3.3.2. “Dot” and Memory Examine/Change Commandscccoeevvvveviieeinnennnn. 54

3.3.3. Register Examine/Change Commandscc.oeevvieviiiieiiieeciiieeineeeieeeeenn 56

3.3.4. Breakpoint COMMANAScuueiiiiiiiiieeiie e e e e e e e e e e e et eeaaeeeees 57

3.3.5. Program Setup And RUN COMMANGASccovviiiiniiiiiieciie e e e e 58

3.3.6. Utility COmMMENGScovvniiiiieii e e e e e e e e 59

3.3.7. USING The DEDUGUESuniiiiieiiii et e e e e aaaas 60

Y o g === o < PP 65
AL Text EQItOr Error MESSAgESccuuiiiiieiii e e e e e e e e e e et a e e e eaaeees 65

A.2. ASSEMDIEr EITOr IMESSAgES ...uuiiieieiii e i e et e e e e e e e e e e e e e et e e e e e et e e aanaees 66

A.3. Interactive Debugger Error CoaeSovvvviiiiiiiiii e 68

B. QUICK REFEIENCE ... i e e e e e e e e e e aaeees 69
B.1. Editor Quick REFENENCE SUMMAIYouiiiiiiiii e e e e e 69

B.2. Interactive Debugger QUICK REFEIENCEccvviiiiiiii e 71

C. Example Assembly Language Programscocvuiiiiiiieiiii e e e e 73
C.1. Assembly Language Programming EXamplesccccoveiiiiiiiin i, 73

Vi

Chapter 1. Text Editor

1.1. Introduction to the Macro Text Editor

The Macro Text Editor is a powerful and easy to use text preparation system. It is commonly used
to create source programs or other kinds of text files used within the OS-9 system. The editor has
many features that make editing faster and more convenient. For example, most commands involve
only one or two keystrokes.

The “Macro” part of the editor's name refers to the its macro facility which alows you to create new
personalized commands or complex commands for special purposes from the basic built-in command
Set.

Becausetheeditor hasitsown variablesand loopsit can be used asakind of text-oriented programming
language, which is especially useful for large software conversion problems.

The editor can also edit several different files at the same time, and even copy text from one file to
another.

1.2. Getting Started

The editor iskept in afile called “edit”, which should be present in your system's CMDS (execution)
directory. To run the editor type:

0sS9: edit

The editor should load and start. When it prints the “E: " prompt, it is ready to accept a command.
The first command to learn is how to quit editing (return to OS-9). To quit, type a“Q” followed by
acarriage return as follows:

E q RETURN

Now that you can get in and out of the editor, itistimeto learn alittle about some basic edit commands
which are discussed in the sections on Display, Edit Pointer Manipulation, and Insertion/Deletion.
After you have mastered the basic commands, you should move on to the more advanced commands.
Good L uck!

1.3. The Edit Command Line

When you run EDIT, you can optionally specify initial input and output file(s). Although you may
open additional files after the editor hasbeen started, there are several commandswhich treat theinitial
files as special cases because it is assumed that these files (if specified) are the main working files.

Y ou may also want to use the OS-9 shell “#” memory size option to give the editor a bigger memory
space, which will let you edit bigger sections of afile at once. If you don't, the default size is 4K
bytes. For example:

0S9: EDIT nyfile #24k

Some of the different forms of the edit command line areillustrated below. The name “ newfile” refers
to the name of a new file you wish to create. The name “oldfile” refersto the name of an existing file
you wish the editor to use.

Edit Buffers

EDI T

There will be no initial input or output files. Text file operations may be performed by opening files
after the editor has started running.

EDIT newfile

The editor will create a new file called “newfile” which will be the initial output file.V There will
be no initial input file. However, read operations may be performed by opening files after the editor
has started running.

EDIT oldfile

The initial input file is “oldfile”. The editor will create a new temporary file called “SCRATCH”
that will be the initial output file. when the edit session is done, “oldfile” will be deleted, and then
“SCRATCH” will be renamed to the name “oldfile” to give the appearance of “oldfile” simply being
updated. Note: The two OS-9 utilities “DEL” and “RENAME” must be present on your system if
you wish to use this method to start the editor.

EDIT oldfile newfile

Theinitial input fileis“oldfile’. The editor will create anew file called “newfile”, which will be the
initial output file.

1.4. Edit Buffers

Thetext being edited is stored in amemory space called an “edit buffer”. Edit buffers may be thought
of as scratch pads used for saving the text to be manipulated by the editor.

Thereis always at least one edit buffer, but you can create severa at the same time if you wish. The
buffer currently being used is called the “primary buffer”, and the last most recently used buffer is
called the “ secondary buffer”. Normally, the primary buffer will simply be referred to as the “ buffer”
or “edit buffer” for short, except whereitisexplicitly called the primary buffer. The secondary bufferis
important only when you wish to use acommand that involves moving text from one buffer to another.

1.5. Edit Pointers

The macro text editor useswhat is called an “ edit pointer” as a place holder to remember your current
positioninthetext buffer. Many commands operate on thetext at the current edit pointer position. This
issimilar to a person using hisfinger as a place holder when reading a newspaper. Certain commands
may be used to reposition the edit pointer, or show the text that it points to, etc. Each buffer has its
own edit pointer to alow you to move from buffer to buffer without losing your place in any of them.

1.6. Entering Commands

Whenever the editor prints the “E:” prompt, it is ready for you to enter a command line. You can
type one or more edit commands on a single line followed by [RETURN]. Some edit commands have
“parameters’ which are values used by the command.

Multiple commands on a single line can be optionally separated by spaces, but you should not start a
command line with a space because the space character isitself acommand (insert line).

Many of the commands are single characters designed for rapid entry, for example“L” and “D”. Some
other command are function keys such as[SPACH and [RETURN]| which only apply if they are the first
character of theline. Y et other commands are “ built-in macros’, which are descriptive names starting

Parameters

with a“.”, such as “.size” and “.shell”. In genera, al three kinds work the same way despite the
differencesin form.

If you make a mistake while typing, it may be corrected before the mistake reaches the editor by
using the backspace key, or by deleting the entire line using the [CONTROL|+[X| key (of course editor
commands can also be used to fix mistakes!). The usual OS-9 control characters work in the editor,
see the OS-9 Operating System User's Guide. A summary is given below:

[CONTROL|HA| Repeat previousinput line.

[CONTROL]HG Interrupt whatever the editor is doing and return to command entry mode.
[CONTROL|+D| Redisplay present input line.

[CONTROL|HH| Backspace.

[CONTROLI+@ ~ Same as[CONTROLIG,

[CONTROL[HW] Thiscontrol key will temporarily halt output to your terminal so that you can read
the screen before the data scrolls off. Output is resumed when you type any other

key.
[CONTROL|*HX] Line delete.
ESCAPE Quit editor - same as“Q” command.

1.7. Parameters

Many of the editor's commands allow you to specify some value which may represent such things as
the number of times to repeat a command or a phrase you wish to find, etc. There are two types of
edit parameters, “numeric” and “string”.

1.7.1. Numeric Parameters

Numeric parameters are used when you wish to specify an amount, such as the number of times to
repeat a command or the number of text lines that a command is be applied. The four methods in
which a numeric parameter may be specified are:

1. The parameter can be omitted. In this case, avalue of 1 is assumed. The example below lists one
line:

L

2. The parameter can be a constant number from 0 to 65535. The example below showsthe“L” (list
lines) command with a parameter of “10”.

L10

3. Theparameter can be“*” which meansrepeat the command asmany timesas possible. Theexample
below means “list al lines’.

L*

4. The parameter can be anumeric variable, whichisa“#” followed by the letters A-Z, to be used in
conjunction with macros and is explained in detail in the “Edit Macro” section.

1.7.2. String Parameters

Strings are used to specify asingle character, word, phrase, or any other arbitrary group of characters.
There are two methods which Y ou may use to specify strings.

Multiple Parameters

Thefirst method is to enclose the text between a pair of “delimiter” characters. The delimiters are not
part of the text. Any characters can be used for delimiters, but punctuation characters chosen so they
are not included in the actual text are most commonly used. For example, to tell the editor to search
for the phrase “fast code” the following command is used:

S/ fast code/

Unlike commands, a distinction is always made between upper case and lower case strings. The
example on the previous page would not find “FAST CODE”.

1.7.3. Multiple Parameters

When a command requires two to more parameters, they are given in the correct order immediately
following the command name. You do not have to type spaces or other characters between the

parameters. For example, the command to search for the next two occurrences of the phrase* compiler”
is:

S2/ conpi | er/

If two string parameters are required by a command, three delimiters are used: one at the beginning,
one between the first string and the second, and one at the end of the second string. For example, the
command to change the phrase “my cat” to “my dog” is:

C, ny cat,ny dog,

The second method uses “string variables’, which consist of a“$” followed by a variable name of A-
Z. These are most commonly used in macros and are discussed in detail in the “ Edit Macro” section.

1.8. Syntax Notation

This manual uses syntax descriptions to help you understand how to enter each command. They
describe what you should enter and the order that you should do it in. The first thing in a syntax
description is the command name. The name should be typed in exactly as given (except lower case
and upper case command names are interchangeable).

The command name is followed by the type of parameters that the command expects. Each of them
should be entered as described in the section on parameters. The syntax descriptionsfor each command
use the following definitions:

n numeric parameter

str string parameter

SPACE Space character

RETURN carriage return or “enter” key

t ext one or more characters terminated by a[RETURN|

1.9. Basic Commands

This section describesthe basic commands used to manipul ate text and control the editor. If you planto
only occasionally use Edit with simple single-buffer editing, these command are all you need to know.

For basic editing, you need only learn the commands listed below, This editor is actually a proper

superset of the Basic09 built-in editor, so if you know Basic09; you already know how to use Edit
effectively!

Change String

Move Forward Line(s)

H Move Backward Line(s)

Insert Line

RETURN Move Forward One Line And Display
Change String

List Line(s)

E| Search For String

Quit Editing

Y ou will notice that some commandswork on entirelines (such as“+"), and otherswork on characters
within lines (such as“>"). We a so recommend that beginners master line-oriented commands before
moving on to character-oriented commands.

1.9.1. Change String

SYNTAX: Cnstrlstr2

.CHANGEnNnstrlstr2
FUNCTION: Changethe next n occurrenceof strltostr2
MODE: Line-Oriented

Thiscommand is used to change the next n occurrencesof “st r 1” to“st r 2”. Starting at the current
edit pointer position; wherever “st r 1” isfound, it is changed to “st r 2”, and then the updated line
is displayed. Changes continue until no more occurrences of “st r 1” are found or until the count “n”
is reached, whichever occurs first.

The “C” command leaves the edit pointer positioned at pointing to the beginning of the last line
changed. The*.CHANGE” built-in macro will leave the edit pointer positioned just past the modified
string. If “st r 1” is not found, the edit pointer will not be affected. Some typical examples of its use

are:
Clthig/that/ .CHANGE/this/that/
C2/in/out/ .CHANGE 2 /in/out/

C*! seek and find ! seek and found !

The first example changes the next occurrence of “this’ to “that”. The second example changes the
next two occurrence of “in” to “out”. Thelast example changes all occurrences of “ seek and find” to
“ seek and found " that are between the edit pointer and end of text.

1.9.2. Delete Characters

SYNTAX: Kn
FUNCTION: Delete (Kill) n characters.
MODE: Character-Oriented

This command is used to erase n characters starting at the current edit position; all deleted characters
are displayed. Some examples are:

K K4

Thefirst command del etes the character at the current edit position. The second command deletes the
character at the current edit position and the next three characters.

1.9.3. Delete Lines

SYNTAX: Dn
FUNCTION: Deleten lines.

Extend Lines

MODE: Line-Oriented

This command is used to delete (erase) n entire lines of text starting with the current line, regardless
of the edit pointer position in the line. The deleted lines are displayed. Some examples are;

D D4 D*

Thefirst example deletes the current line and displaysit. The second example deletes the current line
and the next three lines. The last example deletes all the lines from the current line to the end of _the
edit buffer.

1.9.4. Extend Lines

SYNTAX: Enstr
FUNCTION: Extend n lineswith string.
MODE: Line-Oriented

This command is used to extend (add to the end of) n lines with the string given. After each lineis
extended, the lineis displayed and the edit pointer is moved past it. Below are some examples of how
it may be used:

E/thisis a comment/ E3/XX/

Thefirst example would add the string “thisisacomment” to the end of the current line and move the
edit pointer to the next line. The second example would add the string “X X" to the end of the current
line and the next two lines; the edit pointer would be moved past these lines.

1.9.5. Unextend Line

SYNTAX: U
FUNCTION: Unextend (truncate) line
MODE: Character-Oriented

This command is used to unextend (truncate) a line at the current edit position. The characters in
the line from the current edit pointer position to the end of the line are chopped off. The “>" or “<”
commands (see Section 1.9.12, “Move Characters Backward”) are usually used to position the pointer
prior to use of this command. For example:

U
1.9.6. Insert Line

SYNTAX: t ext
FUNCTION: Insert the line of text before edit position

MODE: Line-Oriented

This command is used to insert complete text lines. The lines are inserted before the current edit
position, and the edit pointer will be positioned following the newly entered line. Therefore, many
lines can be automatically entered in order. The new lines will be inserted before the line pointed to
by the edit pointer prior to entry of the new lines. For example:

E: [SPACEthis is |ine one.
E: [SPACHthis is line two.
E: [SPACHthis is line three.
E " RETURN

E L

This is |ine one.
This is line two.

Insert String

This is line three.
E:

1.9.7. Insert String

SYNTAX: Instr
FUNCTION: Insert aline containing n copiesof st r string
MODE: Line-Oriented

This command is used to insert aline made up of n copies of the string, which isinserted before the
edit pointer. Then the edit pointer isnot changed. For example, if you wanted to insert aline containing
eighty asterisks you would enter the following command:

| 80/ */
Note that this command alwaysinserts aRETURN] after the text. While thiscommand isvery similar to

the (insert line) command, it is provided because the command cannot be used within
macros.

1.9.8. List Following Lines

SYNTAX: Ln
FUNCTION: List the next n lines of text
MODE: Line-Oriented

This command displays n lines of text starting at the current edit position. The edit position is not
changed. For example, the following command will cause the editor to display the current line of text:

L

If you wish to display the three lines, enter the command line given below:

L3

If the edit pointer is not at the beginning of thefirst line, only that part of the line from the edit pointer
to end of line will be displayed. To see al the text from the current edit position to the end of the
buffer, use an asterisk for the value as in the following command line:

L*

The*L” command is not affected by “verify” mode;

1.9.9. List Previous Lines

1.9.10.

SYNTAX: Xn
FUNCTION: Display previouslines of text
MODE: Line-Oriented

Thiscommand isidentical tothe L command except it list lines beforethe current edit pointer position.
Memory Size Adjust
SYNTAX: Mn

FUNCTION: Adjust the workspace sizeto n bytes.
MODE: Directive to Editor

Memory Size Display

1.9.11.

1.9.12.

1.9.13.

Thiscommand is used to adjust the workspace size (total amount of memory available for buffersand
macros). If the workspace becomes full and the editor prevents you from entering more text, you may
overcome the problem by increasing the workspace size. If you will not be using alarge portion of the
available workspace, you may wish to decrease the workspace size so that other OS-9 programs may
use the memory that you free. Below are some examples of how the “M” command is used:

M5000 M10000

Thefirst example sets the workspace size to 5000 bytes. The second exampl e sets the workspace size
to 10000 bytes.

Before using the “Q” command to quit editing, you may want to make the workspace size larger to
decrease the amount of time needed to copy the inpuit file to the output file allowing the editor to read
and write alarger portion of thefile at one time. Note that memory is allocated in 256 byte pages. For
the“M” command to have any effect, the desired workspace size must differ from the current size by
at least 256 bytes. The “M” command will not allow you to return any part of the workspace which
isbeing used for buffers or macros.

Memory Size Display

SYNTAX: SIZE
FUNCTION: Display workspace size.
MODE: Directive to Editor

This command is used to display the size of the workspace and the amount that has been used, An
exampl e of how this command would be used is:

E: .Sl ZE RETURN
521 15328

in the example above, the numbers that are printed below the “.SIZE” command are “521" which is
the amount of the workspace that has been used for buffers and macros, “15328” is the total amount
of memory available in the workspace.

Move Characters Backward

SYNTAX: <n
FUNCTION: Move backwards n characters.
MODE: Character-Oriented

This command is used to move the edit pointer backwards (toward the beginning of the text) n
characters. It istypically used when moving the edit pointer to some position in aline other than the
first character. Here are examples:

< <10
The first command line moves the edit pointer back one character. The second command line moves
the edit pointer back ten characters.

Move Characters Forward

SYNTAX: >n
FUNCTION: Moveforward n characters.
MODE: Character-Oriented

This command is used to move the edit pointer forward (toward the end of the text) n characters. It
is typically used to move the edit pointer to some position in the line other than the first character.
Here are examples:

> >25 >*

Move To End Of Text

1.9.14.

1.9.15.

1.9.16.

1.9.17.

The first command line moves the edit pointer forward (to the right) one character. The second
command line moves the edit pointer forward twenty five characters. The last command line move
the edit pointer to the end of the buffer.

Move To End Of Text

SYNTAX: /
FUNCTION: Moveto end of text.
MODE: Line- or Character-Oriented

This command moves the edit pointer past the last character of the last line in the buffer. Note that
-* isidentical in function to .

Move To Next Line And Display

SYNTAX: RETURN
FUNCTION: Moveto next line and show it.
MODE: Line-Oriented

This command moves the edit pointer to the beginning of the next line and displays it. Note that the
only character you should typeto enter this command is the[RETURNJ-key. Thiscommand is after used
to step through the text one line at atime. For example:

E: L3 list next three |ines
This is line 1
This is line 2

This is line 3
E: [RETURN

This is line 2
E: [RETURN

This is line 3

Move To Start Of Text

SYNTAX: n
FUNCTION: Moveto beginning of text.
MODE: Line and Character-Oriented

This command movesthe edit pointer to the beginning (top) character of thefirst linein the edit buffer.

Move Lines Backwards

SYNTAX: -n

FUNCTION: If n =>1, go backward n lines and display the line.
If n =0, go to the beginning of the line.

MODE: Line-Oriented

The*-” command hastwo uses. If anumber of one or moreisgiven, theedit pointer ismoved backward
that number of lines, and the new line pointed to will be displayed. For example, the following
command will move the edit pointer backward 5 lines:

-5
If the“-" command is given with anumber of zero, it movesthe edit pointer past to the first character

of the current line. This can be useful when you wish to repeat a command within the current line.
For example:

Move Lines Forward

1.9.18.

1.9.19.

1.9.20.

-0
Move Lines Forward

SYNTAX: +n

FUNCTION: If n =>1, goforward n lines and display the line.
If n =0, go to the end of theline.

MODE: Line-Oriented

The “+” command has two uses. If a humber of one or more is given, the edit pointer is moved
forward that number of lines, and the new line pointed to will be displayed. For example, thefollowing
command will move the edit pointer forward 5 lines:

+5

If the“+" command is given with anumber of zero, it moves the edit pointer past to the last character
of the current line. This can be useful when you wish to append text to the current line. For example:
+0

Also notethat “+*” isidentical in function to “/”.

Quit Editor
SYNTAX: Q
FUNCTION: Quit Edit Program
MODE: Directive to Editor

This command is used to quit editing and return to the OS-9 Shell (or the program that called Edit).
For example:

Q

If input and/or output file(s) were specified on the OS-9 command line when you started the editor, the
text in buffer number one would be written to the initial output file, then the remainder of the initial
input file will be copied to the output file. After the text has been copied, the editor will be terminated
and control returned to the Shell.

Search For String

SYNTAX: Snstr

MODE: Line-Oriented
SYNTAX: SEARCHn N st r
MODE: Character-Oriented

FUNCTION: Search for the next n occurrence of st r

Thiscommand is used to search for the next n occurrences of the string specified, starting at the current
edit pointer position. When aline containing the string is found, the lineis displayed.

If the string is found, the edit pointer will be positioned at the beginning of the last line in which the
string was found. If no occurrence of the string was found, the edit pointer position will be unchanged.

The “.SEARCH" built-in macro is similar to “S” except that it leaves the edit pointer just past the
occurrence of the string. Some typical examples of its use are:

S/my string/ .SEARCH/my string/

10

Set Anchor Column

1.9.21.

1.9.22.

1.9.23.

S3"strung out” .SEARCH 3"strung out"
S*/seek and find/ .SEARCH*/seek and find/

The first example searches for the next occurrence of “my string”. The second exampl e searches for
the next three occurrence of “strung out”. The last example searches for al occurrence of “seek and
find” that are between the edit pointer and the end of text.

Set Anchor Column

SYNTAX: An
FUNCTION: Set the SEARCH/CHANGE anchor to column number n.
MODE: Character-Oriented

This command is used to set the SEARCH/CHANGE anchor to column number n. After the anchor
has been set, the“S’ and “C” commands will find a string only if it begins in column number n. For
example, if you want to find astring that you know beginsin column number one (such as an assembly
language label), but don't want to find it if it begins in any other column, you should set the anchor
to column one before using the search command to find it to allow you to skip any occurrence of the
string that do not start in column one. Some typical examples of its use are:

A A50

Thefirst example would cause SEARCH/CHANGE to find astring only if it began in column number
one. The second example would cause SEARCH/CHANGE to find astring only if it began in column
number fifty.

To return to the normal mode of searching so that a string may be found regardless of the column that
it beginsin, the anchor should be set to zero. For example:

A0

If you usethe“A” command to set the anchor, thisremainsin effect only for the Current command line.
After the command line is executed the anchor will automatically return to its normal value of zero.

Shell Command

SYNTAX: SHELL t ext
FUNCTION: Call the OS-9 SHELL to execute the text line.
MODE: Directive to Editor

This command allows you to use any of the OS-9 commands from within the editor. The remainder of
the command line following the “.SHELL"” command is passed to the OS-9 shell for execution. Some
examples of how this command may be used are:

E: .SHELL dir /D1

E: .SHELL asm prog.src | o=prog >/p&

Notice that the second example starts the assembler as a background task.
Tab

SYNTAX: Tn

FUNCTION: Tab to character position n.

MODE: Character-Oriented

This command is used to tab (move the edit pointer) to the character position “n” of the current line.
If “n” exceedsthe line length, the line will be extended with spaces. Some examples of usage are:

11

Verify On/Off

1.9.24.

T T5
The first example would move the edit pointer to the first column of the current line. The second
example would move the edit pointer to the fifth column of the current line.

Verify On/Off

SYNTAX: Vn
FUNCTION: Turn verify ON / OFF
MODE: Directive to Editor

This command is used to turn the verify mode on or off. If the verify mode is turned on (the default),
many edit commands will display their results which can be annoying and/or time consuming when
certain commands are used repetitively (such as“c”, and “d”). If you turn verify off, it may be turned
on again by specifying a non-zero value for n. For example:

Vv V20
Either of the two examples above would turn the verify mode on. To turn the verify mode off use the
following command:

VO

Macros inherit the current verify mode, but if a macro changes the mode the change will only apply
within the macro call.

1.10. Advanced Commands

This section discussesthe editor commandsthat are available for more sophisticated editing tasks. The
advanced commands can be divided into four general categories:

File Manipulation Commands

These commands allow files to be opened, created; closed, read from, and written to. The editor
can work with several files at the same time.

Buffer Manipulation Commands

These commands let you create multiple edit buffers, switch between them, and copy lines or
blocks of text from buffer to buffer.

Loops and Conditional commands

These commands allow sequences of edit commands to be executed repetitively, and to apply
various conditional tests. Using these functions you can create editor “ programs’.

Macros

These commands allow sequences of edit commands (including loops and conditionals) to be
stored, edited, saved, loaded and executed.

1.11. File Manipulation Commands

1.11.1.

New
SYNTAX: .NEW

This command is used when the file being edited is too large to fit into the editor's workspace at one
time.

12

Open Input File

1.11.2.

1.11.3.

All lines of text before the current edit pointer position are written to the output file. The editor will
then try to read new text linesfrom theinput file, which are appended to the end of the edit buffer. The
editor attempts to read as many new lines aswere written out.; The“NEW” command always usesthe
initial input and output files (i.e., the files specified in the command line used to run the editor).

If you have finished editing the text currently in the edit buffer, you may “flush” it out and refill
the buffer with new text by moving the edit pointer to the bottom of the edit buffer and then use the
“.NEW” command as follows:

E: /. NEW RETURN

If you wish to retain part of the text that is aready in the edit buffer,- move the edit pointer to the first
line that you wish to retain, before using the “.NEW” command.

Open Input File
SYNTAX: .READstr

This command is used to open an OS-9 text file for reading, or to close the file after it is no longer
needed. The file opened replaces the original input file specified on the command line used to call
the editor.

To open afile, “st r” isused to specify the OS-9 file name, for example:

E:. READ "nyfile"

To close an input file, the .READ command is used with an empty string as shown below. Closing a
file previously opened using the .READ command also restores the original input file.

E:.READ ""

When afile is opened it remains attached to the current primary buffer to allow each buffer to have
its own independent input file. These files may be read by switching to the proper buffer, then using
the “R” command to read from that buffer's input file. When closing a file, you must select the same
primary that the file was opened with.

Create Output File
SYNTAX: WRITEstr

This command is used to create a new output file or to close the file after it is no longer needed. The
file opened replaces the original output file specified on the command line used to call the editor.

To create an output file, “st r 7 gives the OS-9 file name, for example;

E.WRITE "nyfile"

To close an output file, the WRITE command is used with an empty string as shown below. Closing
afile previoudy opened using the .WRITE command also restores the original output file.

E:. READ ""

When afile is created it remains attached to the current primary buffer so buffer can have its own
independent output file. These files may be written to by switching to the proper buffer, then using
the “W” command to write to the buffer's output file. When closing a file, you must select the same
primary buffer that the file was opened with.

13

Read From Input File

1.11.4.

1.11.5.

Read From Input File
SYNTAX: Rn

This command is used to read “n” lines of text from the buffer's input file. The lines read in are
displayed and inserted before the current edit position. For example:

R10 R*

Thefirst examplereadsten lines of text from theinput file, and the second examplereads all remaining
lines. If thereisno moretext in afile, the “*END OF FILE*” warning message will be displayed.

Write To Output File
SYNTAX: Wn

This command is used to write up to “n” lines of text from the buffer-to its output file. The lines are
written starting at the current edit position. For example:

W10 W*

Thefirst example writes ten lines and the second writes al remaining lines of text.

1.12. Buffer Manipulation Commands

1.12.1.

1.12.2.

Display Buffer And Macro Directory
SYNTAX: .DIR

This command is used to display the directory of the editors buffers and macros. For example:

E:.DI R RETURN

BUFFERS:

$ 0

* 1
50

MACROCS:
MYMACRO
| NDENT

Under the heading BUFFERS isalist of al current edit buffers. The current primary buffer is marked
with an asterisk (Buffer #1 in the example above). The current secondary buffer is marked with a
dollar sign (Buffer #0 in the example above). All other buffersarelisted but otherwise unmarked (such
as Buffer #50 above).

Under the heading MACROS is athe list all current macros. The example above shows the macros
MYMACRO and INDENT.

Change and/or Create Primary Edit Buffer
SYNTAX: Bn

Thiscommand is used to make buffer number “n” the primary edit buffer. The previous primary buffer
becomes the new secondary buffer. If you specify the number of abuffer that does not already exist, a
new buffer will be created and assigned the buffer number. For example, assume the current primary
buffer is 1, then the following command is given.

14

Move Lines From Primary Buffer

1.12.3.

1.12.4.

B5
The example above makes buffer 5 the new primary edit buffer, and buffer 1 would become the new
secondary buffer.

Move Lines From Primary Buffer

SYNTAX: Pn

This command is used to move “n” lines of text from the primary buffer to the secondary buffer.
The lines are removed from the primary edit buffer starting at its edit position and inserted into-the
secondary buffer (before its edit position. The text moved is displayed. Some examples of the use of
this command are:

P P5 P

The first example moves one line of text, the second example moves five lines of text, and the last
example moves all lines that are between the current edit position and end of text.

This command is often used in combination with the “G” command below to perform block transfers
of text within a buffer. The example below illustrates the block move operation.

1. Move edit pointer to first line to be moved.

E:S/First line/
First line to be nmoved

2. Put linesin secondary buffer (in this case, 2 lines).

E: P2

3. Move edit pointer to where text is to be reinserted.

E: +20
4. Get lines back from secondary buffer
E&

First line to be nopved
Second line to be noved

Move Lines To Primary Buffer
SYNTAX: Gn

This command is the reverse of the P command. Text lines are taken from the top (beginning) of the
secondary buffer and inserted into the primary buffer before its current edit position.

1.13. Looping And Conditionals

An important advanced feature of the editor is its ability_for looping and conditional tests allow
seguences of commandsto be repeated anumber of timesuntil acertain conditionismet. For example,
you can repeat a sequence of commands until a certain string is encountered in the text.

The looping and conditional features, especially when combined with the macro functions discussed
in the next section, give the editor many characteristics of a programming language.

15

Looping

1.13.1.

1.13.2.

1.13.3.

Looping

A loop is constructed by enclosing one or more commands in sgquare brackets. A loop count value
(which can be a number or “*”) specifies how many times the command within the loop are to be
repeated. If any of the commands fails (such as an unsuccessful string search), the loop will be exited
prematurely. For example, the commandsin the loop shown below will be executed 12 times or until
the string in the search can't be found.

[SSThis line should be renpved/ -1 D] 12

If aloop istyped in asacommand for immediate execution, it must fitin one completeline. If aloopis
contained within a macro, it can extend across multiple lines. Loops can be nested within each other.

The Fail Flag

When an edit command is not able to complete its operation, the editor will set an internal flag called
the fail flag. For instance if you tried to read from afile that had no more text in it, the editor would
set the fail flag. Thefail flag is used to control loops and conditional statements.

After the fail flag has been set, the editor skips commands until it reaches: a) the end of a keyboard
command line, or b) the end of the current loop or ¢) an IF (“:") command.

The testing commands described in this section set or clear the fail flag. The other commands listed
below can also set the fail flag upon condition noted:

Attempt to move the edit pointer before the beginning of the buffer.
Attempt to move the edit pointer past the end of the buffer.

Not finding the search string.

Not finding the search string.

No text left in the secondary buffer.

No text left in the read file.

P,W No text |eft in the primary buffer.

0 0O n VvV A

Conditional Statements

Conditional statements can beformed insideloopsusingthe®:” operator. Whenthe“:” isencountered,
all statements that follow until the end of the current loop or macro are skipped if the fail flag is not
set (e.g., fail flag is cleared).

Below is an example of acommand line which deletes all lines of text that do not begin with “A”:

Al UNEOB [.STR'A" +: D]]*

The“~" movesthe edit pointer to the beginning of the buffer. The outer loop tests for when the end of
the buffer is reached and terminates the loop. The inner loop tests for an “A” at the beginning of the
line. If there is one, the “+” command is executed, otherwise the “D” command is executed.

Below is another example which searches the current line for “find it”. If found, the line will be
displayed, otherwise the command line will fail and “* FAIL *” will be printed:
[.EQL VO -0 V .F: .STR'find it" -0 .S e

In the command line above, thefirst part is“.EOL VO -0V .F’, which testsif the edit pointer is at the
end of theline. If itis, verify modeisturned off to prevent the “-0” from displaying the line, and then

16

Testing Commands

it isturned back on and the “.F’ causes the loop to be terminated. If the edit pointer is not at the end
of theline, the“.STR” command will seeif “find it” is at the current edit position. If it is, the“-0.S’
commands will be executed to cause the edit pointer to be moved back to the beginning of the line,
the line displayed, and the loop terminated. Otherwise the “>" command is executed which movesthe
edit pointer to the next positionin theline. Notethat it isenclosed in bracketsto prevent it fromfailing
and terminating the main loop if the end of the buffer is reached.

1.14. Testing Commands

1.14.1.

1.14.2.

1.14.3.

1.14.4.

1.14.5.

1.14.6.

1.14.7.

The commands that follow test for certain conditions, and either set or clear the fail flag depending
on the result of the test.

Test For End of File

SYNTAX: .EOF

This command clears the fail flag if the input fileis at end-of file, otherwise it will set the fail flag.
Test For Not End of File

SYNTAX: .NEOF

Thiscommand clearsthefail flag if theinput fileis not at end-of file, otherwiseit will set thefail flag.

Test For End of Buffer
SYNTAX: .EOB

This command will clear the fail flag if the edit pointer is at the end of the buffer, otherwise it will
set the fail flag.

Test For Not End of Buffer
SYNTAX: .NEOB

This command will clear the fail flag if the edit pointer is not at the end of the buffer, otherwise it
will set the fail flag.

Test For End of Line
SYNTAX: .EOL

This command will clear the fail flag if the edit pointer is at the end of atext line, otherwise it will
set the fail flag.

Test For Not End of Line
SYNTAX: .NEOL

This command will clear the fail flag if the edit-pointer is not at the end of the line, otherwise it will
set the fail flag.

Test For Zero
SYNTAX: .ZEROn

This command will clear the fail flag if “n” isequal to zero, otherwise it will set the fail flag.

17

Test For Star

1.14.8.

1.14.9.

Test For Star

SYNTAX: .STARN

This command will clear the fail flag if “n” is equal to 65535 (the value of “*”), otherwise it will
set the fail flag.

Test For String Match
SYNTAX: .STRstr

This command will clear the fail flag if the characters at the current edit position match “str”,
otherwise it will set the fail flag.

1.14.10. Test For String Mismatch

SYNTAX: .NSTRstr

Thiscommand will clear thefail flag if the characters at the current edit position do not match “st r ”,
otherwise the fail flag will be set.

1.14.11. Exit And Clear

SYNTAX: .S

This command is an unconditional exit from the innermost loop or macro; The fail flag is cleared
after the exit.

1.14.12. Exit And Fail

SYNTAX: .F

This command is an unconditional exit from the innermost loop or macro. The fail flag is set after
the exit.

1.15. Macros

1.15.1.

Macrosare new commands that you may createto perform aspecialized or complex task. For example,
there may be a frequently used sequence of commands that you wish to replace with a single macro.
Y ou store the sequence of commands in amacro, after which they may be executed by ssimply typing
aperiod followed by the macro name and optional parameters.

Macros can be saved and loaded from disk files so you can create a personalized macro library.

Macros are made up of two main parts, the macro header and the macro body. The macro header is
used to give the macro a name and describe the type and order of its parameters. The macro body is
made up of any number of ordinary command lines (any edit command may be used in amacro except
the “[SPACH" and the “[RETURN]" commands). Also, macros can not create new macros.

To create amacro, you must first open its definition with the*.MAC” command. After doing so, you
may enter the macro's header and body just asyou would enter text into an edit buffer (you may use any
of the edit commands to do so). When you are satisfied with the macro, you may close its definition
with the “Q” command to return you to the normal edit mode.

Macro Headers

A macro header must be the first line in each macro. It is made up of a macro name which may be
followed by a“variable list” that describes the macro's parameters if there are any. The macro name

18

Parameters and Variables

1.15.2.

consistsof any number of consecutivelettersand underline characters. Bel ow are some example macro
names.

MACRO

trim_spaces

LIST

EXTRA_LONG_MACRO _NAME

Although amacro name may be of any length, it is advisable to limit them to areasonable length since
the name must be spelled exactly the same way each time that you use it. Upper case and lower case
letters are taken to be equivalent and may be used interchangeably.

Parameters and Variables

Like other edit commands, macros may aso be given parameters so that they are able to work with
different values. Parametersare availabl e to the commandsthat make up the macro. To passthe macro's
parameters to these commands, we need away to tell each command which of the macro's parameters
it should use. Thisiswhat the variablelist in the macro header isfor. Each variable in the variable list
is used to represent the value of the macro parameter in its corresponding position. Then wherever the
parameter's value is heeded, the corresponding variable should be used.

Therearetwo types of variables. numeric and string. A numeric variableisavariable nameis preceded
by a“#" character. A string variable is a variable name preceded by a“$” character. Variable names
are just like macro names which are composed of any number of consecutive letters and underline
characters. Some example numeric variables are;

#N
#ABC
#LONG_NUMBER_VARIABLE

Some example string variables are:

$A

$B

$STR

$STR_A

$lower_case variable name

An example of an entire edit macro is given below. It will do the same thing as the “S” command:
search for the next “n” occurrences of a string. The first line of the macro is the macro header; it
declares the macro's name to be “FIND_LN" and aso specifies that the macro needs one numeric
parameter “#N” and one string parameter “$STR”. The entire body of the macro is the second line.
Here, both of the macro's parameters are passed to the “S’ command to do the actual searching:

FIND_LN #N STR
S #N $STR

Here is how this macro would be called:

E:. FIND_LN 15 "string"
To illustrate the importance of the parameter position in the macro header, we will reverse their order

in the next example to make it necessary to use the reverse order when executing the macro. Hereis
the macro definition:

FI ND_LN $STR #N

19

Creating and Editing Macros

1.15.3.

S #N $STR

We must still specify the parameters for the “S” command in the proper order since it is only the
“FIND_LN" macro that was changed. Below is an example of how this macro is executed, notice that
the order of the parameters directly correspond to the order of the variablesin the variable list:

.FIND_LN "string" 15

Creating and Editing Macros

Macros are created and edited using the normal editor command set. The “.MAC” command is used
to create a new macro or open the definition of an existing one so that it may be edited. To create a
new macro, you use “.MAC” with an empty string, for example:

E:.MAC // [RETURN

This creates anew macro and puts you into macro definition mode. The editor respondswith the“M:”
prompt instead of the normal “E:” edit prompt when in macro definition mode. If you wish to edit a
macro that already exists, “st r " is used to specify the macro's name. For example:

E: . MAC " MYMACRO'

This opens the existing macro “MYMACRO” for editing. When a macro is open, you may edit it or
enter its definition by using the edit commands as you would with an ordinary text buffer.

The“ Q" command is used to close the definition of a macro and return to the normal edit mode. For
example:

M Q [RETURN

This would close the definition of the macro currently open and return the editor to its normal edit
mode. Before the editor will allow you to close the definition of a macro, the first line of the macro
must begin with alegal macro name that has not already been used for another macro.

1.16. Macro Commands

1.16.1.

1.16.2.

Comment

SYNTAX: !text

The"!” command may be used to place commentsinside of amacro for documentation. The remainder
of the line following the “!” command is retained but never processed as a command.

Load Macros From File
SYNTAX: .LOADstr

This command is used to load macros from an OS-9 file. Thefile name pathlist is specified by “str ™.
Aseach macroisloaded, EDIT will make sure that no other macro already exists with the same name.
If one does, the macro will not be loaded and EDIT will skip to the next macro on the file. EDIT will
display the names of all the macros that it loads. Some examples of this command are:

E: . LOAD "nmacrofil e" [RETURN
E: . LOAD " MYFI LE"

20

Save Macros

1.16.3.

1.16.4.

Save Macros

SYNTAX: .SAVEstrlstr2

Thiscommand isused to save macroson an OS-9file. Thefirst string is used to specify alist of macros
that are to be saved; the macro names are separated by spaces. The second string specifies the pathlist
for thefile on which the macrosareto be saved. Sometypical examples of the use of thiscommand are:

E: . SAVE " MYMACRO' MYFI LE"
E:. SAVE "MACA MACB MACC' MFI LE"

Thefirst example savesthe macro“MYMACRO” onthefile“MYFILE”, the second saves the macros
“MACA”, “MACB”, and “MACC" on thefile“MFILE”. When more than one macro is to be saved
on asinglefile, their names should be separated by spaces.

Delete Macro
SYNTAX: .DEL str

This command is used to delete (erase) the macro specified by “st r ”. For example to delete amacro
caled “MYMACRQO" use:

E:. DEL " MYMACRO'

21

22

Chapter 2. Assembler

2.1. Introduction

The actual machine instructions executed by a computer are sequences of binary numbers that are
difficult and inconvenient for people to deal with directly. Creating a machine language program of
any length by hand istedious, error prone, and time consuming, making it an almost impossible task.
Assembly language bridges the gap between computers and people who must write machine-language
programs. In assembly language, descriptive mnemonics (abbreviations) for each machineinstruction
are used which are much easier to learn, read, and remember are used instead of numerical codes. The
assembler also lets the programmer assign symbolic names to memory addresses and constant val ues.
The Assembler also has many other features to make assembly language programming easier.

This assembler was designed expressly for the modular, multi-tasking environment of the OS-9
Operating System, and incorporates built-in functions for calling OS-9, generating memory modules,
encouraging the creation of position-independent-code, and maintaining separate program and data
sections. It has also been optimized for use by OS-9 high-level language compilers such as Pascal and
C, and can be used on either OS-9 Level One or OS-9 Level Two systems.

Another noteworthy characteristic of this assembler is its extremely fast assembly speed which is
attributable to its tree-structured symbol table organization. The tree structure dramatically reduces
symbol table searching, which is the most time-consuming operation performed by an assembler.

Thismanual describeshow to usethe OS-9 Assembler and basic programming techniquesfor the OS-9
environment. It is not intended to be a comprehensive course on assembly language programming or
the 6809 instruction set. If you are not familiar with these topics, you should consult the Motorola
6809 programming manuals and one of the many excellent assembly-language programming books
available at libraries or bookstores.

2.2. Installation

The OS-9 Assembler uses the following files:
asm theassembler program
DEFS adirectory containing OS-9 common system-wide definition files. Thesefiles are:
OS9Defs
SysType
SCFDefs
RBFDefs

Thefile“ASM” should be located in the “CMDS’ directory of your system disk. “DEFS’ should be
present in the root directory.

2.3. Assembly Language Program Development

Writing and testing of assembly language programs involves an edit/assembl e/test cycle. In detall, the
individual steps are:

1. Create a source program file using the text editor.
2. Run the assembler to translate the source file to a machine object (machine language) file.
3. If the assembler reported errors, use the text editor to correct the source file, then go to step 2.

4. Run and test the program. The OS-9 Interactive Debugger is frequently used for testing.

23

Operational Modes

5. If the program has bugs, use the text editor to correct the source file, then go to step 2.

6. Document the program and you are done!

2.4. Operational Modes

The OS-9 Assembler has a number of features specifically designed to conveniently develop machine
language programs for the OS-9 environment. These features include: special assembler directive
statements for generating OS-9 memory modules, identification of 6809 addressing modes that are
not usually permitted in OS-9 programs, and separate data and program address counters.

The assembler has two operating modes:. “normal”, and “Motorola-compatible”.

In normal mode, the features mentioned above are active. In the Motorola-compatible mode, the
assembler works the same way as a standard 6809 “absolute” assembler (without separate program
and data counters). This mode exists so that the assembler can be used to generate programs for 6809
computers that are not equipped with OS-9.

The assembler. will be in the normal mode unless the “m” option is used in the command line or in
an OPT statement. Similarly, the “-m” option will return the assembler to the normal mode (modes
can be freely switched to achieve special effects).

The assembler performs two “passes’ (complete scans) over the source file. During each pass, input
lines areread and processed one at atime. During thefirst pass, the symbol tableis created. Most error
messages, the program listing, and the object code are generated during the second pass.

2.5. Running the Assembler

The assembler is a command program that can be run from the OS-9 Shell, from a Shell procedure
file, or from another program. The disk file and memory module names are “asm”. The basic format
of acommand line to run the assembler is:

asmfilenane [option(s)] [#nmensize] [>listing]

Brackets enclose optional things, thus the only items absolutely required are the “asm” command
name, and “filename” which is the source text file name (or more correctly, pathlist). A typical
command line looks like this:

0S9: asmprogs | s -c #12k >/p

In. thisexampl e, the source programisread from thefile“prog5”. The sourcefile name can befollowed
by an option list, which alows you to control various factors such as whether or not a listing or
object file is to be generated, control the listing format, etc. The option list consists of one or more
option abbreviations separated by spaces or commas. An option is turned on by its presence in the
list, or a minus followed by an option abbreviation acts to turn the function off. If an option is not
expressly given, the assembler will assume adefault condition for. it. Also, command line options can
be overridden by OPT statements within the source program (see the OPT statement description for
more information). In the example above, the options “I” and “s” are turned on, and “¢” is turned off.

The optional “#memsize” item is actually processed by the Shell to specify how much data area
memory the assembler is assigned. If memory is not specified, the assembler will be assigned 4K
bytes of memory in its data area. Most of this space is used to store the symbol table. Any additional
memory requested by this option allows the symbol table to be larger. Large programs generally use
more symbols, so their memory requirements are correspondingly larger. If the assembler generates
a“Symbol Table Full” error message, this option should be used to increase the assembl er's memory
size. In the previous example, 12K bytes of memory is specified.

24

Running the Assembler

The final item, “>listing”, alows the program listing generated by the assembler (on the standard
output path) to be optionally redirected to another pathlist, which may be an output device such as a
printer, a disk file, or a pipe to another program. Like the memory size option, output redirection is
handled by the Shell and not the assembler itself. If thisitem is omitted from the command line, the
output will appear on your terminal display. In the above example, the listing output was directed to
adevicecaled “p”, which is the name of the printer on most OS-9 systems.

Below are examples of various forms of command lines and detailed explanations of their output.
There are also other options available so many variations of the command line are possible. The
examples listed hereillustrate the most commonly used forms.

asm di sk_crash
This command line will assemble thefiledi sk_cr ash.

There will be: no listing created.
no object file created.
errors reported to standard error path.
4k memory for symbols (default).

asm work.rec o #16k
This command line will assemble the filewor k. r ec.

There will be: no listing created.
an object file created with the name “work.rec” in the current commands dir.
errors reported to standard output path.
16k of memory for symbols.

asmtyco o=/d0/cnds/tyco.obj | #16k
This command line will assemble thefilet yco.

There will be: alisting directed at standard output.
an object file created with the name “tyco” in the /d0/cmds directory.
errors reported to the listing path.
16k of memory for symbols.

asmit_works o,| #16k >/p
This command line will assemblethefilei t _wor ks.

There will be: alisting directed at /p.
an object file created with the name “it_works’ in the current commands dir.
errors reported to the listing path.
16k of memory for symbols.

asmrent _a duck 1,5,wr2,d25 #10k

This command line will assemble thefiler ent _a_duck.

There will be; alisting directed to standard output.
no object file created.

errors reported to the listing path.
10k of memory for symbols.

25

Source Program Format and Syntax

asymbol table created.
listing will have 25 line pages.
listing will have 72 column lines.

asm/termi | o=/d0/progs/woof
This command line will assemble input from the terminal.
There will be; alisting directed at standard output.
an object file created with the name woof in the /d0/progs directory.

errors reported to the listing path.
4k of memory for symbols (asm default).

2.6. Source Program Format and Syntax

2.6.1. Assembler Source Files

The Assembler reads its input from an input file (path) which contains variable-length lines of text.
Input files may be created and edited by the OS-9 Text Editor described in Section 1, or any other
standard text editor.

The maximum length of the input line is 120 characters. Each line contains assembler statements as
explained in this manual. Every lineisterminated by a[RETURN] character.

2.6.2. Source Statement Fields

Each input lineisatext string terminated by a[RETURN)]. Theline can havefrom oneto four “fields’:

» anoptiona label field

» an operation field

 an operand field (for some operations)
 anoptiona comment field

There are also special cases: if the first character of alineis an asterisk, the entire line istreated as a
comment which is printed in the listing but not otherwise processed. Blank lines are ignored but are
included in the listing.

2.6.2.1. Label Field

The label field begins in the first character position of the line. Labels are usualy optional
(instructions), but there are exceptions. They are required by some statements (i.e. EQU and SET), or
not allowed on others (assembler directives such as SPC, TTL, etc.). The first character .of the line
must be a spaceif the line does not contain alabel.

The label must be a legal symbolic name consisting of from one to eight uppercase or lowercase
characters, decimal digits, or the characters“$”,“_”, or “.”, however the first character must be aletter
(see Sect. 3.3). Labels (and namesin general) must be unique, i.e., they cannot be defined more than
once in a program (except when used with the “SET” directive).

Label names are stored in the symbol table with an associated 16-bit value, which is normally the
program counter address before code is generated for the line. In other words, instructions and most
constant-definition statements associate the label name with the value of .the program address of the
first object code byte generated for the line.

An exception to thisruleisthat labelson SET and EQU statements are given the value of the result of
evaluation of the operand field. In other words, these statements allow any value to be associated with

26

Expressions

asymbolic name. Likewise, labels on RMB statements are given the value of the data address counter
when in normal assembler mode, or the value of the program address counter when in Motorola-
compatible mode.

2.6.2.2. Operation Field

This field specifies the machine language instruction or assembler directive statement mnemonic
name. It immediately follows and is separated from the |abel field by one or more spaces.

Some instructions must include a register name which is part of the operation field (i.e.,, LDA, LDD,
LDU). In these instructions the register name must be part of the name and cannot be separated by
spaces asin older 6800-type assemblers. The assembler acceptsinstruction mnemonic namesin either
uppercase or lowercase characters.

I nstructions cause oneto five bytes of object codeto be generated depending on the specific instruction
and addressing mode. Some assembler directive statements (such as FCB, FCC) aso cause object
code to be generated.

2.6.2.3. Operand Field

The operand field follows, and must be separated by, at least one space from the instruction field.
Some instructions don't use an operand field; other instructions and assembler directives require an
operand field to specify an addressing mode, operand address, parameters, etc. The sectionsdescribing
the instructions and assembler directives explain the format for operand(s), if any.

2.6.2.4. Comment Field

The last field of the source statement is the optional comment field which can be used to include a
descriptive comment in the source statement. This field is not processed other than being copied to
the program listing.

2.7. Expressions

Operands of many instructions and assembler directives can include arithmetic expressionsin various
places. The assembler can evaluate expressions of almost any complexity using aform similar to the
algebraic notation used in programming languages such as BASIC and FORTRAN.

Expressions consists of operands, which are symbolic names or constants, and operators, which
specify an arithmetic or logical function. All assembler arithmetic uses two-byte (internally, 16 bit
binary) signed or unsigned integers in the range of 0 to 65535 for unsigned numbers, or -32768 to
+32767 for signed numbers.

In some cases, expressions are expected to evaluate to a value which must fit in one byte (such as 8-
bit register instructions), and therefore must be in the range of 0 to 255 for unsigned values and -128
to 127 for signed values. In these cases, if the result of an expression is outside of this range an error
message will be given.

Expressionsare evaluated from left-to-right using the al gebraic order of operations (i.e. multiplications

and divisions are performed before additions and subtractions). Parentheses can be used to alter the
natural order of evaluation.

2.7.1. Operands

The following items may be used as operands within an expression:
2.7.1.1. Decimal Numbers

Can have an optiona minus sign and one to five digits, for example:

27

Arithmetic and Logical Operators

100 -32761 12 5 -1
2.7.1.2. Hexadecimal Numbers

Consist of adollar sign (“$") followed by one to four hexadecimal characters (0-9, A-F or af), for
example:

$ECO0 $100 $3

2.7.1.3. Binary Numbers
Consist of apercent sign (“%") followed by one to sixteen binary digits (0 or 1), for example:
%0101 %01111000011110000 %10101010

2.7.1.4. Character Constants

Consist of single quote (“™) followed by any printable ASCII character. For example:
X 'c '5 'c

2.7.1.5. Symbolic Names
Names are defined by EQU or SET statements, or by use as a label. They consist of one to eight
characters: upper and lower case alpha (A-Z, a&z), digits (0-9), and special characters _, ., or $

(underscore, period or dollar sign), the first character of which cannot be a digit. See Page 2-12 for
more information.

2.7.1.6. Program Instruction Counter
The asterisk (“*") represents the program instruction counter value as of the beginning of the line.
2.7.1.7. Program Data Counter

The period (“.”) represents the data storage counter value as of the beginning of theline. It is not used
in Motorola-compatible mode.

2.7.2. Arithmetic and Logical Operators

Operators used in expressions operate on one operand (negative and not) or on two operands (all
others). Thetable below showsthe available operators, listed in the order they are evaluated relative.to
each other, e.g, logical OR operations are performed before multiplications. Operators listed on the
same line have identical precedence and are processed from left to right when they occur in the same
expression.

Table 2.1. Operators By Order of Evaluation

- negative ~logical NOT (highest)
& logical AND I'logical OR

* multiplication / division

+ addition - subtraction (lowest)

Logical operations are performed hitwise, i.e., thelogical function is performed bit-by-bit on each bit
of the operands.

Division and multiplication functions assume unsigned operands, but subtraction and addition work
on signed (2's complement) or unsigned numbers. Division by zero or multiplication resulting in a
product larger than 65536 have undefined results and are reported as errors.

28

Symbolic Names

2.7.3. Symbolic Names

A symbolic name consists of from one to eight uppercase or lowercase characters, decimal digits, or
thecharacters“$’,“_", or“.”. However, thefirst character must bealetter. Thefollowing are examples
of legal symbol names:

HERE there SPL030 VX_GH
abc.def Q1020.1 L.123.x t$integer

These are examples of illegal symbol names with reasons why they areillegal:

2move - does not start with aletter
main.backup - more than 8 characters
Ib1#123 - #is not alegal name character

Names are defined when first used as a label on an instruction or directive statement. They must be
defined exactly onetimein the program (except SET labels: see SET statement description). If aname
isredefined (used as alabel more than once) an error message is printed on subsequent definition(s).
Multiple forward references (i.e. a definition using currently undefined names) are not allowed.

Symbolic hames are stored with their associated type and value in an assembler data structure called
the“ symbol table”, which uses most of the assembl er's data memory space. Using the default memory
size of 4K thereisroom in the symbol table for approximately 200 names. The shell optional memory
sizemodifier can be used to give the assembler alarger memory space. Each entry in the table requires
15 bytes, so each additional 4K of memory adds space for about 273 additional names. For example,
the command line:

asm sourcefile #16K

gives the symbol table enough space for alittle over athousand names. If the “S’ option is selected,
the assembler will generate an aphabetical listing of al symbol names, types, and values which is
printed at the end of the assembly.

2.7.4. Instruction Addressing Modes

One of the 6809's features is that its instruction set has a large variety of addressing modes. Each
group of similar instructions can be used with specific addressing modes, which are usually specified
in the assembler source statement operand field. The assembler will generate an error message if an
addressing mode is specified which cannot be legally used with the specific instruction.

2.7.4.1. Inherent Addressing

Certain instructions don't need operands (SYNC, SWI, etc.), or implicitly specify operands (MUL,
ABX, etc.), therefore no operand field is needed.

2.7.4.2. Accumulator Addressing
Some instructions have the A or B accumulators as operands. Examples:
CLRA

ASLB
I NCA

2.7.4.3. Immediate Addressing
In immediate addressing, the operand bytes are the actual value used by the instruction. Instructions

that use 8-hit registers must have operand expressions that evaluate to 0 to 255 (unsigned) or -128 to
127 (signed), or an error will be reported. The syntax is:

29

Instruction Addressing Modes

i nstr #expression
Examples:
LDD #$1F00

| db #buf si z+2
ORCC #$FF-CBI T

2.7.4.4. Relative Addressing

This addressing mode is used by branch-type instructions such as BCC, BEQ, LBNE, BSR, LBSR,
etc. The operand field is an expression which is the “destination” of the instruction, which is aimost
always a name used as a statement |abel somewhere in the program. The assembler computes an 8 or
16-hit program counter offset to the destination which is made part of the instruction. The destination
of short branch-type instructions must be in the range of -126 to +129 bytes of the instruction address
or an error message will be generated. Long branch-type instructions can reference any destination.
If along branch instruction references a destination that would be within the range of a smaller and
faster short branch instruction a“W” warning symbol will be placed in the listing line's information
field. All instructions using relative addressing are inherently position-independent code.

Examples:

BCS LOCP
LBNE LABELS5
LBSR START+3
BLT CCOUNT

2.7.4.5. Extended and Extended Indirect Addressing

Extended addressing uses the second and third bytes of the instruction as the absolute address of - the
operand. Data section addresses of OS-9 programs are assigned when the program is actually executed,
so absolute memory addresses are not known before the program is run. Therefore this addressing
modeisnot normally used in OS-9 programs. The assembler will print an informational warning flag,
“W”, if this addressing mode is specified.

Extended Indirect addressing is similar to extended addressing except that the address part of the
machineinstruction is used as the address of amemory location containing the address of the operand.
Because this mode al so uses absolute addresses, it is not frequently used in OS-9 for the reasons given
above, and is aso flagged with a warning by the assembler. This addressing mode is selected by
enclosing the address expression in brackets.

Examples:

ADDA $1C48 ext ended addressi ng

ADDA [$D58A] ext ended i ndirect addressing
LDB START ext ended addressing

stb [end] extended i ndirect addressing

2.7.4.6. Direct Addressing

Direct addressing uses the second byte of the instruction as the least significant byte of the operand's
address. The most significant byte is obtained from the MPU's direct page register. This addressing
modeis preferred for accessing most variablesin OS-9 programs because OS-9 automatically assigns
unique direct pages to each task at run-time, and also because this mode produces short, fast
instructions. The syntax for extended and direct addressing has the same form:

30

Instruction Addressing Modes

i nstr <addr expr>

The assembler automatically selects direct addressing mode if the high-order byte of the address
matches it's interna “direct page”. This “direct page” is not the same as the run-time direct page
register: it is strictly an assembly-time value. It is ordinarily set to zero and can be changed with the
SETDP directive.

Y ou can force the assembler to use direct addressing by using the “<” symbol just before the address
expression, or extended addressing by using the “>" symbol in the same manner.

Examples:

| da tenp (assenbl er sel ects node)
LDD >PI A+1 (forces extended addressing)
| dx <count (forces direct addressing)
STD [poi nter] (extended indirect)

2.7.4.7. Register Addressing

Some instructions operate on various MPU registers, which are referred to by a one or two letter
name. In these instructions, the operand field specifies one or more register names. The names can he
uppercase or lowercase. The register names are:

A accumulator A (8 bits)

B accumulator B (8 bits)

D accumulator A:B concatenated (16 bits)
DP direct page register (8 bits)

CcC condition codes register (8 bits)

X index register X (16 hits)

Y index register Y (16 bits)

S stack pointer register (16 bits)

U user stack pointer register (16 hits)

PC program counter register (16 bits)

The EXG and TFR instructions have the form:

instr reg,reg

The registers given must be of the same size (either 8 or 16 hits) or the assembler will report an error.
The PSHS, PSHU, PULS, and PULU instructions accept alist of one or more register names. Even
though the assembler will accept register namesin any order, the MPU stacks and unstacks them in

a specific order.

The syntax for these instructionsis:

instr reg {,reg}

Examples:

TFR X, Y

31

Overview of Indexed
Addressing Modes

EXG A, DP
pshs a, b, x, dp
PULU d, x, pc

2.7.5. Overview of Indexed Addressing Modes

One of the highlights of the 6809's architecture is the wide variety of indexed addressing modes (23
varieties). Indexed addressing is analogous to “register indirect”, meaning that an indexable register
(X,Y,U,S, or PC) isused as the basic address of the instruction's operand. The different varieties of
indexed addressing use the specified register v contentswhich may be unchanged, temporary modified,
or permanently modified, depending on the exact mode used.

All indexed modes must specify an index register, either X, Y, U, or SP. The PC register is used with
the program-counter relative mode only. Any of theindexed addressing modes can be made “indirect”
by enclosing the operand field in brackets to cause the effective address generated by the addressing
mode to be used as the address of a pointer to the operand, rather than as the address of the operand.

2.7.5.1. Constant Offset Indexed

This mode uses an optiona signed (two's complement) offset which is temporarily added to the
register'svalueto form the operand's effective address. The offset can be any number, or zeroin which
case the register's unaltered contents is used as the effective address. The assembler automatically
picks the shortest of four possible varieties that can represent the offset. Therefore it isimportant to
make sure that any symbolic name used in the offset expression has been previously defined, or the
assembl er will generate longer code than necessary or produce phasing errors. The syntax for constant
offset indexed instructions is:

instr ,reg zero of fset

instr offset,reg constant of fset
instr [,req] zero of fset indirect
instr [offset, reg] constant - of fset indirect
Examples:

I da , x no of f set

I da 0, x no of f set

[dx 100, x of fset of 100

Ldb COUNT, S of fset of COUNT

ldd tenmp+2,y of fset of tenp+2

leax -2,y of fset of -2

clr [PIA X i ndi rect node

2.7.5.2. Program Counter Relative Indexed

This addressing mode is similar to constant-offset indexed except that the program counter register
(PC or PCR) isused as an index register, and the assembler computes the offset differently. Instead of
using the offset expression directly, the expression is assumed to refer to the address of the operand.
Theassembler calculatesthe required offset from the current program counter location to the operand's
address and uses the resulting value as the offset. There are two forms.of this instruction: one -using
an 8-hit offset and the other using a 16-hit offset; The assembler will use the 16-bit form unless you
force the short form by preceding the operand field with a“<” character.

The syntax for program-counter relative indexed is:

i nstr addr, PC program counter relative
i nstr addr, PCR program counter relative

32

Overview of Indexed
Addressing Modes

instr [addr, PCR] program counter relative indirect
i nstr [addr, PC program counter relative indirect

This addressing mode is important in OS-9 programs because it permits addresses of constants and
constant tables to be accessed using position-independent-code as required by OS-9.

Examples:

| dd t enp, pcr

LDD t enp, pc same as instruction above

| eax t abl e, pcr

jsr addr, pcr sanme as “I| bsr addr”

CLR [control +4, PCR] dangerous; uses absol ute address

at “control +4, PCR" as effective
address for clear

2.7.5.3. Accumulator Offset Indexed

In this mode the contents of the A, B, or D accumulators is temporarily added to the specified index
register to form the address of the operand. This addition is signed two's complement. If the A or
B accumulators are specified, the sign bit is “extended” to form the 16 bit value which is added
to the index register. Meaning that if the most significant bit of the accumulator is set, the high
order byte of the offset will be $FF. BEWARE: thisis acommonly overlooked characteristic that can
produce unexpected results! Using the D register avoids this because it gives all 16 bits. The syntax
for accumulator-offset indexed is:

instr Areg
instr B, reg
instr D reg

Examples:

LDX B, Y
LEAY D, X
RQL [B, U

2.7.5.4. Auto-Increment and Auto-Decrement Indexed

These addressing modes use the specified index register as the effective address of the operand, while
permanently adding or subtracting one or two from theregister. In auto-increment mode, theincrement
is performed AFTER the register is used. In auto-decrement mode, the decrement is performed
BEFORE theregister isused. Thisis consistent with the way 6809 stack pointers operatein PSH and
PUL instructions. If indirect addressing is used, the decrement and increment are performed before
the effective address is used as a pointer to the operand.

SINGLE AUTO-INCREMENT AND SINGLE AUTO-DECREMENT ARE NOT PERMITTED
WHEN INDIRECT ADDRESSING IS SELECTED.

Syntax for auto-increment and auto-decrement indexed addressing is:

inst: ,-reg si ngl e aut o-decr enent
instr ,--reg doubl e aut o-decr enent
inst: ,reg+ singl e aut o-i ncrenent
instr ,reg++ doubl e auto-i ncrenent
instr [,reg--] doubl e aut o-decrenent indirect

33

Assembler Directive Statements

instr [,reg++] doubl e auto-increnent indirect

Examples:

clr ,x++

LDX ,--Y

I da , s+ is the same as puls a (except CCR is affected)
sta ,-s is the same as pshs a (except CCR is affected)
[dd [, s++]

2.8. Assembler Directive Statements

In addition to the 6809 instruction mnemonic statements, the assembler includes a number of directive
statements which perform a variety of functions which can be loosely categorized as follows:

Assembly Control

Statements such as IF, OPT, END, USE, etc., are used to control the operation of the assembler
itself but do not directly affect object code generation.

Storage Declarations

The ORG and RMB statements are used to assign variable (data ared) storage for the assembly
language program,

Symbolic Name Declarations
The EQU and SET statements are used to assign value to assembler symbolic names.
Constant Declarations

The FCB, FDB, FCC, and FCS statements are used to insert constant values in the assembler
program.

Operating System Functions

The MOD/EMOD and OS9 statements are used to create system-required object code for memory
modules and system call, respectively.

Each assembler directive statement is described in detail in the following pages.

2.8.1. END Statement

Indicates the end of a program. Its use is optional since END will be assumed upon an end-of-file
condition on the source file. END statements may not have labels.

2.8.2. EQU and SET Statements

SYNTAX: EQU <expr essi on>
SET <expr essi on>

These statements are used to assign a value to a symbolic name (the label) and thus require labels.
The value assigned to the symbol is the value of the operand, which may be an expression, a hame,
or a constant.

The difference between the EQU and SET statementsiis that:

» Symbols defined by EQU statements can be defined only once in the program.
» Symbols defined by SET statements can be redefined again by subsequent SET statements.

FCB and FDB Statements

In EQU statementsthelabel name must not have been used previously, and the operand cannot include
aname that has not yet been defined (i.e., it cannot contain as-yet undefined names whose definitions
also use undefined names). Good programming practice, however, dictates that all equates should be
at the beginning of the program to allow the assembler to generate the most Compact code by selecting
direct addressing wherever possible.

EQU is normally used to define program symbolic constants, especially those used in conjunction
withinstructions. SET isusually used for symbols used to control the assembler operations, especialy
conditional assembly and listing control. Example:

TRUE equ $FF

FALSE equ O

SUBSET set TRUE
i fne SUBSET
use subset. defs
el se
use full.defs
endc

SUBSET set FALSE

2.8.3. FCB and FDB Statements

SYNTAX: FCB <expressi on>{, <expr essi on>}
FDB <expr essi on> {, <expr essi on>}

The Form Constant Byte and Form Double Byte directives generate sequences of single (FCB) and
double (FDB) constants within the program. The operand is alist of one or more expressions which
are-evaluated and output as constants. If more than one constant is to be generated, the expressions
are separated by commas.

FCB will report an error if an expression has a value of more than 255 or less that -128 (the largest
number representable by a byte). If FDB evaluates an expression with an absolute value of less than
256 the high order-byte will be zero.

Examples:

FCB 1,20,'A

fcb index/2+1,0,0,1

FDB 1, 10, 100, 1000, 10000

fdb $F900, $FA00, $FB00, $FC00

2.8.4. FCC and FCS Statements

SYNTAX: FCC <delim> string <delim>
FCS <delim> string <delim>

These directives generate aseries of bytes corresponding to astring of one or more characters operand.
The output bytes are the literal numeric value of each ASCII character in the string. FCS is the same
as FCC except the most significant bit (the sign bit) of the last character in the string is set, which is
a common OS-9 programming technique to indicate the end of atext string without using additional
storage.

The character string must be enclosed by delimiters before the first character and after the last
character. The characters that can be used as delimiters are:

" # S %& () * e+, - .

35

IF, ELSE, and ENDC Statements

Both delimiters must be the same character and cannot be included in the string itself. Examples:

FCC / nbst programmers are strange peopl e/
FCS , 0123456789,
fcc z

2.8.5. IF, ELSE, and ENDC Statements

SYNTAX: IFxx <expr essi on>
<st at enent s>
[ELSE]
<st at enent s>
ENDC

An important feature of the Assembler isits conditional assembly capability to selectively assemble
or not assemble one or more parts of a program depending on a variable or computed value. Thus, a
single source file can be used to selectively generate multiple versions of a program.

Conditional compilation uses statements similar to the branching statements found in high level
languages such as Pascal and Basic. The generic IF statement is the basis of this capability. It has
as an operand a symbolic name or an expression. A comparison is made with the result: if the result
of the comparison is true, statement following the IF statement will be processed. If the result of
the comparison is false, the following statements will not be processed until an ENDC (or EL SE)
statement is encountered. Hence, the ENDC statement is used to mark the end of a conditionally
assembled program section. Here is an example that uses the IFEQ statement which tests for equality
of its operand with zero:

| FEQ SW TCH

| dd #0 assenbled only if SWTCH = 0
| eax 1,x

ENDC

The ELSE statement allows the IF statement to explicitly select one of two program sections to
assemble depending on the truth of the IF statement. Statements following the ELSE statement are
processed only if the result of the comparison was false. For example:

| FEQ SW TCH

[dd #0 assenbled only if SWTCH = 0

leax 1, x

ELSE

[dd #1 assenbled only if SWTCH is not = 0
leax -1, x

ENDC

Multiple IF statements may be used, and “nested” within other IF statements if desired. They cannot,
however, have labels.

There are several kinds of IF statements, each performing a different comparison. They are:

IFEQ True if operand equals zero

IFNE True if operand does not equal zero

IFLT True if operand islessthan zero

IFLE True if operand isless than or equal to zero
IFGT True if operand is greater than zero

36

MOD and EMOD Statements

IFGE True if operand is greater than or equal to zero
IFP1 True only during first assembler pass (no operand)

The IF statements that test for less than or greater than can be used to test the relative value of two
symbolsif they are subtracted in the operand expression, for example,

IFLE MAX-MIN

will betrueif MIN isgreater than MAX. Note the reversal of logic dueto the fact that this statement
literally means

IFMAX-MIN <=0

The IFP1 statement causes subsequent statements to be processed during pass 1, but skipped during
pass 2. It is useful because it allows program sections which contain only symbolic definitions to be
processed only once during the assembly. Thefirst passisthe only pass during which they are actually
processed because they do not generate actual object code output. The OS9Def s fileisan example of
arather large section of such definitions. For example, the following statement is used at the beginning
of many source files.

| FP1
use /d0/ def s/ OS9Def s
ENDC

2.8.6. MOD and EMOD Statements

SYNTAX: MODsi ze, naneof f, typel ang, attrrev {, execoff, mensi ze}
EMOD

Theseinstructions provide a convenient means of creating OS-9 memory modules and their associated
modul e headersand CRC check values. A detailed discussion of the module and modul e header format
can be found in the System Programmer's Manual. Programs can be loaded into memory by OS-9
only if they arein module header format.

The MOD statement is used at the beginning of an OS-9 module. Its function is to create a standard
0OS-9 module header and to initialize a CRC (cyclical redundancy check) value which will be
automatically computed by the assembler as the program is processed by the assembler.

The MOD statement must have an operand list of exactly four or exactly six expressions separated by
commas. Each operand corresponds, in order, to the elements of amodule header. The exact operation
of the MOD statement is as follows:

1. Theassembler's program address counter and data address counters are reset to zero (same as ORG
0), and the internal CRC and vertical parity generators are initialized.

2. The sync codes $87 and $CD are generated as object code.
3. Thefirst four expressionsin the operand list are evaluated and output as object code. They are:
a. module size (two bytes)
b. module name offset (two bytes)
c. type/language byte (one byte)
d. attribute/revision byte (one byte)

4. The “header parity” byte is automatically computed by the assembler from the previous bytes and
generated as object code.

37

MOD and EMOD Statements

5. If thetwo optional additional operands are present, they are evaluated and generated as object code.
They are:

e. execution offset
f. permanent storage size
Note that some of the expressions in the operand list are one byte long, and others are two bytes.

Because the origin of the object program is zero, all labels used in the program are inherently relative
to the beginning of the modulg; thisis perfect for the module name and execution address offsets. The
codeinthe body of the modulefollows. Assubsequent lines are assembl ed, theinternal CRC generator
continuously updates the module's CRC value. The EMOD statement (which has no operand) is used
to terminate the module. It outputs the correct 3-byte CRC generated over the entire module.

IMPORTANT NOTE: The MOD and EMOD statements will not work correctly if the assembler is
in “Motorola-compatible” mode unless you do not use RMB or ORG statements after the MOD and
before the EMOD.

The following example illustrates the basic techniques of creating a module using MOD and EMOD
statements.

Example 2.1. Sample Program Illustrating Use Of MOD and EMOD Directives

* Repeat Utility - Copy one line of standard input to standard out put
* Modul e Header Decl aration

type set PRGRMOBICT (these are defined in OS9DEFS)

revs set REENT+1 (this is defined i n OS9DEFS)
MOD pgml en, nane, type, revs, start, nensi z
fchb 1 edi tion nunber (optional)
nane FCS /repeat/ nodul e name string

* synbolic definitions

STDIN equ O standard i nput path
STDOUT equ 1 standard output path
LI NLEN equ 80 maxi mum line | ength

* data storage declarations

buffer RWVB 80
stack RMB 250
mensi z EQU . data storage size is final

w o

val ue
* Programinstructions

start equ *

| da #STDI N | oad i nput path nunber

| dy #LI NLEN | oad nax input count

| eax buffer,u get buffer address

0s9 i $readln call OS-9 to read line

bcs exit abort if error

| da #STDOUT | oad out put path nunber
| eax buffer,u get buffer address

0s9 i$witln call OS-9 to wite line

38

NAM and TTL Statements

bcs exit abort if error

clrb return not error code
exit 0s9 F$EXIT return to 0S-9

enmod end nodul e

pgm en EQU * programsize is addr of last byte +1

2.8.7. NAM and TTL Statements

SYNTAX: NAMstring
TTL string

These statements allow the user to define or redefine a program name and listing title line which
will be printed on the first line of each listing page's header. These statements cannot have label or
comment fields.

The program name is printed on the left side of the second line-of each listing page, followed by a
dash, then by thetitle line. The name and title may be changed as often as desired.

Examples:

nam Dat ac
ttl Data acquisition System

2.8.8. OPT Statement
SYNTAX: OPT <opti on>

OPT alows any of severa assembler control options to be set or reset. The operand of the OPT
statement is one of the characters that represent the various options. If the option nameis preceded by
aminus sign, the option is turned off, otherwise it is turned on. Two exceptions are the “D” and “W”
options which must be followed by a number. This statement must not have label or comment fields.

The options and default (initial) states are:

C Conditionals On: print conditional assembly statementsin listing. (C)

Dnum Page Depth: set the number of lines per listing page including headings and blank lines.
(D66)

E Error Messages On: print error messagesin listing. Errors can be detected when thisoption
is off by presence of an “E” in astatement'sinformational field. (E)

F Use Form Feed: Use aform feed for page gject instead of line feeds. (-F)

G Generate All Constant Lines: Prints all lines of code generated by directives. Otherwise
only thefirst lineis printed. (-G)

L Listing On: Causes formatted assembly listing to be generated. If off, only error messages
printed. (-L)

M Turn on Motorola-compatible mode. For further information refer to Section 2.4,
“Operational Modes” and Section 2.8.12, “ SETDP Statement”. (-M)

N Narrow listing: generate listing in a non-columnized, compressed format for better

presentation on narrow video display devices. (-N)

O[=f i | enane] Generateobject codefile: (-O) If no filenameisgiven, an object file having the same name
astheinput file will be created in the current execution directory.

If asingle name is given, the object file having that name will be created, but still in the
current execution directory.

39

0OS9 Statement

If afull pathlistisgiven, it will be used asthe name specification of thedevice, directory(s),

and fileto create.

S Generate Symbol Table: Prints the entire contents of the symbol table at the end of the

assembly listing. Prints each name, its value and a type code character:

D = datavariable (RMB definitions)
E = equate label (EQU)

L = program label

S = set label

U = undefined name

Thetableis printed across the page in alphabetical order. (-S)

Wnum Set Page Width: defines the maximum length of each listing line. Lines are truncated if
they exceed thisnumber. The comment field starts at column 50 so a number lessthan this

may cause important parts of the listing to be lost. (W80)
Examples:
opt |

opt wr2
opt s

2.8.9. OS9 Statement

2.8.10.

SYNTAX: OS9<expressi on>

This statement is a convenient way to generate OS-9 system calls. It has an operand which is a byte
value to be used as the request code. The output is equivalent to the instruction sequence:

SW 2
FCB oper and

A filecalled “OS9Def s”, which is distributed with each copy of OS-9, contains standard definitions
of the symbolic names of all the OS-9 servicerequests. These namesare commonly used in conjunction
with the OS9 statement to improve the readability, portability, and maintainability of assembly
language software.

Examples:
0s9 | $READ (call CS-9 “READ’ service request)
0s9 F$EXI T (call CS-9 “EXIT” service request)

ORG Statement

SYNTAX: ORG <expr essi on>

Changes the value of the assembler's data location counter (normal mode) or the instruction location
counter (Motorola- compatible mode). The expression is evaluated and the appropriate counter is set
to the value of the result. ORG statements cannot have labels.

Note: OS-9 does NOT use“load records’ that specify absolute addresses of the generated object code:
the object code is assumed to be a contiguous memory module. Therefore, programs assembled using
the Motorola-compatible mode that ater the instruction address counter will not load correctly.

Examples:

40

PAG and SPC Statements

2.8.11.

2.8.12.

2.8.13.

ORG DATAMEM
ORG . +200

PAG and SPC Statements

SYNTAX: PAGIE]
SPC <expr essi on>

These statements are used to improve the readability of program listings. They are not themselves
printed, and cannot have labels.

The PAG statement causes the assembler to begin a new page of the listing. The aternate form of
PAG is PAGE for Motorola compatibility.

The SPC directive puts blank lines in the listing. The number of blank lines to be generated is
determined by the value of the operand, which can be an expression, constant, name. If no operand
isused asingle blank lineis generated.

SETDP Statement
SYNTAX: SETDP<expressi on>

Assigns a value to the assembler's internal direct page counter, which is used to automatically select
direct versus extended addressing. The direct page counter does not necessarily correspond to the
program's actual direct page register during execution.

The default value of the counter is zero, and should NOT be changed in OS-9 programs: this statement
isintended for use with the “Motorola-compatible” mode only. SETDP statements cannot have labels.

USE Statement

SYNTAX: USEpathli st

Causes the assembler to temporarily stop reading the current input file. It then requests OS-9 to open
another file/device specified by the pathlist, from which input lines are read until an end-of-file occurs.
At that point, the latest file is closed, and the assembler resumes reading the previous file from the
statement following the USE statement.

USE statements can be nested (e.g., afile being read due to a USE statement can also perform USE
statements) up to the number of simultaneously open files the operating system will allow (usually
13, not including the standard /O paths). Some useful applications of the USE statement are to accept
read input from the keyboard during assembly of adisk file (asin USE /TERM); and including library
definitions or subroutines into other programs. USE statements cannot have labels.

2.9. Assembly Language Programming Techniques

For programsto run correctly in the OS-9 environment, they must be written following these two key
rules:

1. Programs must be position-independent-code (PI C).

2. All memory locations modified by the program (variables and data structures) must be located in
adata memory areawhose location is assigned by OS-9 at run-time.

Thereason for these rulesis simple: OS-9 dynamically assigns memory space at the time the program
isrun. You have no control over which specific addresses are assigned at aload areafor the program,
or where the program's variables are assigned. Because of the powerful 6809 instruction set and
addressing modes, these rules do not force you into writing tricky or complex programs; rather, they

41

Program Sections and Data Sections

requirethat programs be written a specific way. When you do this, you enjoy the advantages of having
reentrant and highly portable programs.

Y our programs will usualy fall into one of three categories:

1. A subroutineor subroutine package: Y ou must write your subroutinesin position-independent code.
Data sections are usually amatter of coordination with the calling program, and OS-9 usually plays
no direct rolein this.

2. A program to be executed as an individual process (commands are of this type). You must use
position independent code, and receive data area parameters that delineate the memory space
assigned when run.

3. Programs to be run on another, non-OS-9 computer. Have fun! Anything goes!

2.9.1. Program Sections and Data Sections

If your program is to be run as a process (by means of the OS-9 shell, fork system call, or execute
system call), OS-9 will assign two separate and distinct memory areas. The program object code is
loaded into one memory space in the form of a memory module. The other spaceis for variables and
data structures. The program's modul e header specifiesthe minimum permissible size for each of these
area. Thedistinction between these two spacesis extremely important. It isalso why the assembler has
two memory address counters:. the data address counter is for the data area and the instruction address
counter is for the program area. THE VALUES OF THE COUNTERS ARE NEVER ABSOLUTE
ADDRESSES. They are addresses relative to the beginning of an OS-9-assigned address.

2.9.2. Program Area

This area is a single, continuously-allocated memory space, where the program is loaded by OS-9.
In order for OS-9 to be able to load the program, it must be in memory module format. The OS-9
System Programmer's Manual contains a detailed description of what memory modules are and how
they work. This manual assumes you are familiar with them. Programs generated by this assembler
can consist of one or more memory modules. They are all written to the same file and will be
loaded together by OS-9. In assembly language source programs, modules usually begin withaMOD
directive and end with a EMOD directive to take care of the header and module CRC generation for
you.

The program area should never be modified by the program itself; especialy if the program isto be
reentrant and/or placed in ROM. It can (and should) contain constants and constant tables, aslong as
they are not altered by the program.

2.9.3. Writing Position Independent Code

Y ou do not know the actual absolute address of anything in the program until it is actually run. The
6809 position-independent addressing modes are based on “ program counter relative addressing”. This
addressing mode is used by al branch and long branch instructions.

» Use BRA and LBRA instead of IMP; use BSR and LBSR instead of JSR extended or JSR direct
mode instructions (JSR indexed is OK).

» Use program-counter-relative (PCR) indexed addressing mode (usable by all load, store, arithmetic
and logical instructions) to access constants declared in FCB, FDB, FCC, and FCS statements.

» Don't useimmediate addressing to load aregister with an absolute address (instruction label name):
use PCR indexed addressing instead.

Many well-written programs use constant tables of addresses (often called dispatch tables or pointer
tables). For the program to be PIC, these tables cannot contain absolute addresses. The correct
technique is to create tables of addresses relative to some arbitrary location. The routines that use the

42

Accessing The Data Area

tables read the table entries, then add them to the absolute address of the arbitrary location. The sum
is the run-time absolute address. The absolute address of the “arbitrary location” is determined Using
PCR instructions (typically LEA). The choice of the common addressis arbitrary, but two places may
have specific advantages: the beginning address of the table (an index register probably will contain
this address anyway); and the first byte of the module.

Making table entries relative to the start of the module is especially handy because the value of the
assembl er's instruction address counter is also relative to the beginning address of the module. Here's
an exampl e of aroutinethat jumpsto one of several subroutineswhose relative addresses are contained
in atable. The routine is passed a number in the B accumulator to be used as an index to select the
routine.

begin nod a,b,c,d,e, f start of nodule
(various instructions)

di spat | eax table,pcr get the absolute address of the table

asl b multiply index by 2 (two bytes/entry)
ldd b, x get contents of table entry

| eax begin, pcr get beginning address of nodul e

jmp d, x add rel ative address and go. .

table fdb routinel
fdb routine2
fdb routine3
fdb routine4d

The example below does the exact same thing, but the entries are relative to the beginning of the table
instead of the beginning of the module:

di spat | eax table,pcr get the absolute address of the table

asl b multiply index by two
I dd b, x get routine offset
jmp d, x add and go ...

table fdb routinel-table
fdb routine2-table
fdb routine3-table
fdb routine4-table

Note that this technique has fewer instructions (and is faster) because we already had the reference
addressin aregister, thereby eliminating a LEAX instruction.

The same technique is useful for accessing character strings, constants, complex data types, etc.

2.9.4. Accessing The Data Area

The size of the data area is specified by the “minimum.permanent storage size” entry of the module
header. Of courseit ispossiblefor aprogram to optionally receive more than this minimum. Remember
that OS-9 allocates memory in exact multiples of 256-byte pages, and all processes get at least one
page. The data area must have enough room for all the program'’s variables and data structures, plus a
stack (at least 250 bytes) and space to receive parametersin, if any are passed.

When the process is invoked by OS-9, the bounds of the data area are passed to the process in the
MPU registers. U will contain the beginning address and Y the ending address. The SP register is set
to the ending address+1, unless parameters were passed. The direct page register will be set to the
page number of the beginning page.

Additional Comments

In the assembly language source program, storage in the dataareais assigned using the RMB directive
which uses the separate data address counter. It is good practice (but not mandatory) to declare all
variables and structures at the beginning of the program. Smaller, frequently used variables should
be declared first. They will usually all fit in the first page, meaning they can be accessed using short,
fast direct page addressing instructions. Larger items should follow. These can be addressed in one
of two ways:

1. If the U register is maintained throughout the program, constant-offset-indexed addressing can be
used.

2. Part of the program'’s initialization routine can compute the actual addresses of the data structures
and store these addressesin pointer locationsin the direct page. The addresses can be obtained later
using direct-page addressing mode instructions.

Important note: you cannot use program-counter relative addressing to obtain addresses of objectsin
the data section due to the fact that the memory addresses assigned to the program section and the
address section are not a fixed distance apart. Of course, immediate and extended addressing are also
not generally usable.

An example that illustrates the U-relative technique is shown on the following page.

Example 2.2. Example of Data Area Access

* decl are vari abl es
tenp rmb 1

buf 1 rmb 400

buf 2 rmb 400

buf 3 rmb 400

* clear each 400-byte buffer

| eax bufl,u get address of bufl
bsr cl rbuf
| eax buf2,u get address of buf2
bsr cl rbuf
| eax buf3,u get address of buf3
bsr cl rbuf

* cl ear buffer subroutine
* X = address of buffer

clrbuf 1dd #400 D = byte count

cl oop clr | x+ cl ear byte and advance pointer
subd #1 decrenment count
bne cl oop | oop if no done yet

rts

2.9.5. Additional Comments

Thisinformation is given as aminimal reference only. The 6809 has many powerful instructions that
can do the same things other ways while still retaining PIC and reentrant characteristics. The LEA
and TFR instructions can be quite useful, and all the indexed addressing modes are helpful. For more
information refer to the OS-9 System Programmer's Manual.

2.10. Using the DEFS Files

Thereare many common symbolic namesthat occur in almost every OS-9 assembly language program.
For example, each system call has a name such as “I$READ”. Although you can include definitions
using EQU statements in each program for only those system names it uses, it is generally more
convenient to utilize the system definitions files supplied with OS-9 which are generally referred to
asthe “DEFSfiles’. They are so named because they are included in adirectory called “DEFS’.

The OS9Defs File

2.10.1.

Using the DEFS files also minimizes chances of error and improves the maintainability of your
programs. In the event a future release of OS-9 redefines a system data structure, for example, you
need only to reassemble your origina program with the DEFSfiles for the new release.

In addition to definitions of names of system calls, error codes, memory module formats, etc., the
DEFS files also have convenience definitions for ASCII characters, condition code register bits,
register names, etc.

The DEFSfiles are not sacred - you should feel free to add your own definitions when and where. you
want. Y ou should note your additions, however, so they can be carried easily to future release editions.

To include the main DEFS file in your program, include the following assembler statement at the
beginning of your program:

USE / DO/ DEFS/ OS9DEFS

This tells the assembler to include this file with your source code when assembling the file. It is
recommended to use conditionals (IFP1) with the USE statement to speed up assembly and to prevent
the OS9Def s file from being printed out in your listing every time.

There are individual DEFS files that generally correspond to the part of the system you are dealing
with. For example, definitions used by the SCF file manager-related functions are contained in afile
called “SCFDef s”. You would include this file in your program if you were writing an SCF-type
device driver. In the following pages, each of the major DEFSfilesis discussed in detail to assist you
in selecting appropriate files to include with each of your programs.

NOTE: The actual names of DEFS files may vary from the generic names. given in this manual
according to the level and release number of your system. For example, your “0s9defs’ file may
actually be named “0s9defs.lii” onaLevel Il system, etc.

The OS9Defs File

The most commonly used DEFSisthe OS9Def s filewhich contains general system wide definitions.
Thisfile contains:

System Service Request Code Definitions
Signal Codes

Status Codes For Getstat/Setstat

Direct Page Variables

Table Sizes

Module Format & Offsets

Module Field Definitions

Module Type/Language Masks & Definitions
Module Attributes/Revision Masks & Definitions
Process Descriptor Format & Offsets
Process Status Flags

0OS-9 System Entry Vectors

Path Descriptor Offsets

File Access Modes

Pathlist Special Symbols

File Manager Entry Offsets

Device Driver Entry Offsets

Device Table Format & Offsets

Device Static Storage Offsets

Interrupt Polling Table Format & Offsets
Register Offsets on Stack

Condition Codes

System Error Codes

The OS9Defs File

1/O Error Codes
System Service Request Code Definitions

The main purpose of the DEFSfilesisto define all the OS-9 system callswith their associated values.
This is the main purpose of the OS9Def s file. It enables you to use the system request name in an
OS9 cdl. All OS-9 service request codes are listed (i.e., user, system and 1/O function requests);

Signal Codes

This group of labels define the four signals defined and used by OS-9 with their associated values.
User defined signal's should be added here.

Status Codes For Getstat/Setstat

When using the OS-9 system calls I$SETSTT and I$GETSTT there exist predefined status call
functions. Those supported by OS-9 file managers and device drivers are listed in this area with their
values. These labels are then available to be used for loading the 'B' register before the call is made.

Direct Page Variables

These labels define the offsets into page 0 of OS-9 system variables. Zero page variables are used
by OS-9 for interrupt vectors, table addresses, process queues and internal memory information. It is
strongly recommended that you don't use the page 0 variables in your programs. These variables are
not physically accessible to user programs in Level Il. They are given in OS9Def s for those who
might need to write special drivers and interrupt handlers, or need to do system debugging. Improper
use of these variables can cause unexpected and perhaps fatal system operation.

Table Sizes

These equates define the size of the table used under the OS-9 operating system. Thisinformation is
used internally to OS-9 and its value isin defining the size of thistable.

Module Format & Offsets

These labels define the offsets into a module header of all OS-9 compatible modules. M odul e offsets
can be used by programmers to find information in amodule (i.e. module size, name, type, language
etc.). Thisarea hasthe Universal Modul e offsets and the offsets for specific module types. Thisisdue
to the fact that descriptors, drivers, programs and file managers have a different module format.

Module Field Definitions
Module Type/Language Masks & Offsets
Module Attributes/Revision Masks and Offsets

Thisisthe area where the different bits of information that go into a module header are defined to be
of use to those who need to decode. a module header and possibly modify one. Since the Assembler
generates a module header for you using the 'mod' and 'emod' statements, the value of this area will
be when you do need to read a header. Masks are defined in this area for the type, language, attribute,
and revision bytes for accurate and understandable masking. Also, the different values for each field
are listed here for making comparisons.

Process Descriptor Format
Process Status Flags

In this area are the definitions and offsets for the process descriptor and the status flag values. Again,
for most programmers, this information will be of little programming use. This information will be
primarily of educational value for those who are interested in the internal workings of OS-9. The
process descriptor is the table of information describing a process. The status flags are the definitions
for the flags used by OS-9 to mark a process for different states (i.e. dead, sleeping etc.).

46

The OS9Defs File

0S-9 System Entry Vectors

0S-9 system entry points are defined in this area of OS9Def s. These are the vector addresses for the
different types of interrupts. These are pseudo vectors, not the actual hardware vector points. For more
information, see the System Programmer's Manual.

Path Descriptor Offsets

The offsetsfor OS-9 path descriptors.are defined in this area. Path descriptors are created by OS-9 for
every path opened in the system. Thisis again information used mainly by the system and will be of
little value to most users except to garner an understanding of OS-9.

File Access Modes

These are the definitions for the file access modes under OS-9. The definitions will mainly be used
for ISCREATE and I$OPEN system calls which require the file attributes to be set at the time of the
call. See the System Programmer's Manual and the User's Guide for more information.

Pathlist Special Symbols

This arealists the definitions of specia pathlist characters. These will be used by those programmers
who need to parse.out apathlist. Thiswould be agood areato add special charactersthat you frequently
usein your programs.

File Manager Entry Offsets

All file managers on an OS-9 system have the entry offsets defined in this area. Programmers who
plan on writing their own file manager will need to provide these entry offsets. Those who have no
ambition to write a file manager will most likely have no use for these offsets.

Device Driver Entry Offsets

Like file managers, al drivers have their own set of entry offsets. Programmers will need to provide
these offsets at the beginning of their drivers. Once again, refer to the System Programmer's Manual.

Device Table Format

0S-9 keeps an entry in a table for every active device in the system. The form of the table entry is
defined inthisarea. Thisinformation isused internally to the operating system. Theformat is provided
herefor those who are curious asto the operation of OS-9. The System Programmer's Manual contains
adiscussion on how OS-9 handles 1/0.

Device Static Storage Offsets

Every active device also has associated with it a static storage area that contains information about
the device and isfilled in when the device is activated. The actua filling in of the parametersis done
by three sources; IOMAN, the file manager, and the device driver. The offsets listed in this area are
filled in by IOMAN. For more information on the rest of these offsets, look in SCFDef s, RBFDef s,
your driver sources, and the System Programmer's Manual.

Interrupt Polling Table Format

The polling table is formed from entries having the structure defined here. It contains al the
information the interrupt service routine needs to handle interrupts generated by active devices. This
information is used internally by OS-9 and is, in general, of no programming value. The System
Programmer's Manual has more information on interrupt servicing.

Register Offsets on Stack

Any time the 6809 CPU gets an interrupt of the form NMI, IRQ, SWI, SWI2 (an OS-9 system call),
or SWI3, the registers are pushed on the stack. The offset to those registers are defined in this area of

47

The SCFDefs File

OS9Def s. Thisinformation will be of particular value to those who write drivers and need to get the
ISGETSTT or ISSETSTT codes. These could also be used to pass parameters on the stack to different
procedures in a program.

Condition Code Bits

Every program written will at some point need to twiddle with the condition code bits. In order to
make the programs more legible there are defined in this area the values for each condition code. By
using these masks one can set or reset the bits as needed. It is good programming practice to use these
labelsin your code.

System Error Codes
I/O Error Codes

Thefinal entry in OS9Def s isthe error code definitions. These labelsdefineall the errorsreturned by
0S-9 and the I/O handlers. If your programs have any form of error trapping you will need to compare
the error to a-known error definition in order to determine what should occur. It isin this areawhere
they are defined. For information on what a specific error code means when it is returned, refer to the
User's Guide and the System Programmer's Manual.

2.10.2. The SCFDefs File

Another DEFSfileincluded is SCFDef s. Thisfile containsthe definitions pertaining to the sequential
file manager and sequential file devices. Specificaly it contains:

Static Storage Requirements
Character Definitions
File Descriptor Offsets

SCFDef s will be used when writing drivers for sequential devices and managers. It is also the area
to add your own SCF-type definitions.

2.10.2.1. Static Storage Requirements

This area defines the offsets to the static storage required by SCF devices. This area continues from
V.USER defined in OS9Def s. SCF devices must reserve this space for the SCF manager; The storage
reserved after this group is determined by the driver. For information on SCF static storage refer to
the System Programmer's Manual.

2.10.2.2. Character Definitions

Certain SCF devices will at some time need to filter special characters. These could be X-ON or X-
OFF characters for example. This is the area where these symbols are defined. This would be a good
areato add your own SCF special characters.

2.10.2.3. File Descriptor Offsets

The last entry in SCFDef s is the file descriptor offsets for SCF devices. The actual total storage is
declared in OS9Def s under the entry called Path Descriptor Offsets. Both SCF and RBF have their
own definitions of the PD.FST and PD.OPT fields. This area is where SCF's definitions are located.
Refer to the System Programmer's Manual for more information on descriptors.

2.10.3. The RBFDefs File

RBFDef s is the parallel to SCFDef s but for random block file managers and devices. This file
includes:

Random Block Path Descriptor Format

48

The RBFDefs File

State Flags

Device Descriptor Format
File Descriptor Format
Segment List Entry Format
Directory Entry Format
Static Storage

This DEFSfile will be used when writing random block device drivers and managers. Thisisalso the
areato add your own RBF type definitions.

2.10.3.1. Random Block Path Descriptor Format

This entry defines the file descriptor offsets for RBF devices. The actual total storage is declared
in OS9Def s under the entry called Path Descriptor Offsets. Both SCF and RBF have their own
definitions of the PD.FST and PD.OPT fields. This is where RBF's definitions are located. Refer to
the System Programmer's Manual for more information on descriptors.

2.10.3.2. State Flags

The flags defined here are used internally by OS-9 to mark the state of the disk buffer. These are of
little programming value but are supplied for those who areinterested in the workings of the operating
system. For more information on file handling read the System Programmer's Manual.

2.10.3.3. Device Descriptor Format

Thisis the format of what goes into sector zero of an RBF device and is what RBF uses to find the
actua physical information on the device. Thisinformation is used to fill in the drive table by OS-9.
RBF devices differ from SCF type devicesin that the actual deviceinformation is kept on the media.
The device descriptor in memory is then mainly used by the format program. Refer to the System
Programmer's Manual for more information on the subject.

2.10.3.4. File Descriptor Format

The format defined here is kept on disk and contains information about the file (i.e. size, segment list,
owner etc.). The information is read in by RBF and is used when accessing a file. Any time the file
is modified this sector is modified. Again thisinformation is provided for those who are curious asto
the structure of RBF device files. For more information read the System Programmer's Manual.

2.10.3.5. Segment List Entry Format

The segment list is the area that tells the sector extensions of afile. The actual list is composed of the
beginning sector and the size (in number of sectors) of each segment of thefile. Filesthat are extended
have another segment added to the segment list in the file descriptor sector above. Thisinformationis
of little programming value to most users. Refer to the System Programmer's Manual.

2.10.3.6. Directory Entry Format

Every file in a directory has an entry of the format described here. Only two pieces of information
exist here, the file name and the file descriptor sector address. For information on directories, again
refer to the System Programmer's Manual.

2.10.3.7. Static Storage

The final entry in RBFDef s is the static storage requirement for the drive tables. The drive tables
are alocated by the driver and have a size and format of that shown here. They begin at DRVBEG
and continue to DRVMEM. Also V.NDRYV is allocated before the tables and defines the number of
drives and therefore the number of tables used by a driver. The rest of the static storage is defined in
OS9Def s and in the driver. Thisinformation will be used by those programmer's who need to write
their own RBF devicedriver. The System Programmer's Manual has more information on the subject.

49

The SysType File

2.10.4. The SysType File

TheSysType fileisafilethat describesthe physical (hardware-dependent) parameters of the various
types of OS-9-based systems. Some of those parameters are:

CPU Type Definitions
Memory Management Unit Definitions
CPU Speed Definitions
Disk Controller Definitions
Clock Module Definitions
PIA Type Definitions
System Type Definitions
Disk Port Address

Disk Definition

Disk Parameters

Clock Port

1/0O Port

This DEFS file is relatively straightforward. The main use of this file will be with those who are
writing or modifying their drivers. All the necessary physical information is supplied here, and no
discussion is needed.

50

Chapter 3. Interactive Debugger

3.1. Introduction

The Interactive Debugger is a powerful tool for system diagnostics or testing 6809 machine language
programs. It isalso useful when you need to directly accessthe computer'smemory for any of anumber
of reasons: testing /O interfaces, verifying data, etc. The cal culator mode can simplify computation of
addresses, radix conversion, and other mathematical problems often encountered by machinelanguage
programmers.

3.1.1. Installation

The Interactive Debugger program is supplied on afile called “DEBUG” which should be located in
the system's execution directory (usualy “/DO/CMDS”) .

3.1.2. Calling the Interactive Debugger

After the installation procedure, given above, has been performed, the Interactive Debugger may be
executed from OS-9 by typing:

0S9: debug

3.1.3. Basic Concepts

The debugger operates in response to single line commands typed in from the keyboard. Y ou can tell
when you are communicating with_the debugger because it aways displaysa“DB:” prompt when it
expects acommand line.

Each lineisterminated by a[RETURN]. If you make a mistake while typing, you can use the backspace
key, or you can delete the entire line using the [CONTROL|+[X] key.

Each command line starts with a single character command which may be followed by text or one or
two arithmetic expressions depending on the specific command. Uppercase and |lowercase characters
can be used interchangeably. Here's an exampl e of the “ space” command which displays the result of
an expression in hexadecimal and decimal notation:

DB: A+2
$000C #00012
DB:

Numbers entered into or displayed by the debugger are in hexadecimal notation unless special
commands are used, such as the decimal conversion command shown above.

I mportant note

The exact format of displays generated by some of the commands may be different than the
examplesin thisbook. Thisis dueto customization for the screen size of specific computers.

3.2. Expressions

A powerful feature of the Interactive Debugger is its integral expression interpreter, which permits
you to type in simple or complex expressions wherever an input value is called for in a command.
Expressions used by the Interactive Debugger are similar to those used with high-level languages such
as BASIC, except there are some extra operators and operands that are unique to the debugger.

51

Constants

Numbers used in expressions are 16 bit unsigned integers, which is the 6809's “native” arithmetic
representation. Theallowablerange of numbersistherefore zero to 65535. Two's complement addition
and subtraction is performed correctly, but will print out as large positive numbers in decimal form.
Some commands require byte values and an error message will be given if the result of the expression
istoo large to be stored in a byte (when the result > 255). Also, some operands are only a byte long
(such as individual memory locations and some registers). These are automatically converted to 16-
bit “words” without sign extension. Spaces may be used between operators and operands as desired
to improve readability but do not affect evaluation.

3.2.1. Constants

Constants can bein base 2 (“binary”), base 10 (“decimal”), or base 16 (hexadecimal or “hex”). Binary
and decimal constants require a prefix character: % (binary) or # (decimal). All other numbers are
assumed to be hex. Hex numbers may also have an optional $ prefix. Here are some examples:

Decimal Hexadecimal Binary

#100 64 %1100110

#255 FF %11111111

#6000 1770 %1011101110000
#65535 FFFF %1111111111111111

Character constants may also be used. A single quote' for one character constants and adouble quote ™
for two character constants. These produce the numerical value of the ASCII codesfor the character(s)
which follow. For example:

‘A = $0041
'0 = $0030
"AB = $4142
"99 = $3939

3.2.2. Special Names
There are other legal operandsin expressions; “Dot”, “Dot-Dot”, and register names.

“Dot” is simply the debugger's current working address in memory. It can be examined, changed,
updated, used in expressions, or recalled. It has the main effect of eliminating a tremendous amount
of memory address typing. The following command prints the current working address:

DB: . [RETUR
2204 82

“Dot-Dot” isthevalueof “Dot” beforethelast timeit was changed. It isconvenient to useif you change
dot to an incorrect value, or as a second address “memory”. For example, the following command
prints the value of “Dot-Dot”:

DB: . 400 (set Dot to 400)
DB: . 800 (change Dot to 800)
DB: .. (di splay Dot - Dot)
0400 12
DB: . .. (change Dot to Dot - Dot)

3.2.3. Register Names

MPU Registers may be specified by a colon character “:” followed by the mnemonic name of the
register; for example:

52

Operators

Accumulator A
Accumulator B
Accumulator D

X Register

Y Register

U Register

Direct Page Register
Stack Pointer

program counter register

88;6%C-<><UUJJ>

Condition Codes Register

Thevaluesreturned are of the program under test'sregisters, which are“ stacked” when the debugger is
active. Those registers which are asingle byte long are promoted to aword when used in expressions.

NOTE: When aprogram is interrupted by a breakpoint, the SP register will be pointing at the bottom
of the MPU register stack.

3.2.4. Operators

Operators specify arithmetic or logical operationsto be performed within an expression. The operators
having ahigher precedence (priority) are executed before those having lower precedence. For example,
all multiplications are performed before additions. Operators in a single expression having equal
precedence are evaluated left to right. Parentheses may be used to override precedence as desired.
Here are the operators, in precedence order:

+ addition - subtraction <- Lowest
* multiplication / division

& logical AND I logical OR

- negative <- Highest

3.2.5. Indirect Addressing

The Indirect Addressing function returns the data at the memory address using a value (expression,
constant, special name, etc.) as the memory address. The Interactive debugger has two indirect
addressing modes:

<expr > returnsthe value of amemory byte using the value of “expr " as an address
[expr] returns the value of a 16-bit word using the value of “expr " as an address

Here are some examples:

<200> returns the value of the byte at address 200
[:X] returns the value of the word pointed to by the X register
[.+10] returns the value of the word at address dot plus 10.

3.2.6. Forming Expressions

An expression can be composed of any combination of constants, register names, special names, and
operators. Here are some examples:

#1024+#128 :X-:B-2 +20
Y*(X+:A) ‘U & FFFE #125

53

Debug Commands

3.3. Debug Commands

3.3.1. Calculator Command

To use the calculator command, enter a line starting with one or more spaces followed by any legal
expression, then “return”. The expression will be evaluated and the result displayed on the following.
line in both hexadecimal and decimal representations.

Here are some examples:

DB: 5000+200
$5200 #20992

DB: 8800/ 2
$4400 #17408

DB: #100+#12
$0070 #00112

These commands are also handy for converting values from one representation to another:

DB: 9%.1110000
$00F0 #00240

DB: [SPACH ' A [RETURN
$0041 #00065

DB: #100
$00C4 #00100

You can aso useindirect addressing to look at memory without changing Dot:

DB: <.>
$004F #00079

Another trick is simulating 6809 indexed or indexed indirect instructions. For example:

DB: [SPACH [: D+:Y]

is the same as the assembly language syntax [D,Y].
3.3.2. “Dot” and Memory Examine/Change Commands
3.3.2.1. Display Dot Command

Typing “.” causes the current value of Dot and the contents of that memory address to be displayed,
for example:

DB: . di spl ay Dot
2201 BO

The first number, 2201, isthe present value of Dot, and BO is the contents of memory location 2201.

“Dot” and Memory Examine/
Change Commands

3.3.2.2. Change Dot Command

To change the value of Dot, type a period followed by an expression which is to be the new value,
for example:

DB:. 500 set Dot to 500
500 12

One additional feature: whenever Dot is changed; itslast valueis saved, and can be restored by typing
two periods:

DB: . di spl ay Dot
1000 23 .

DB:. 2000 set Dot to 2000
2000 9C

DB: .. restore old val ue of Dot
1000 23

3.3.2.3. Advance Dot Command

Typing aline with just [RETURN], advances Dot to the next memory address and prints its new value
and contents. The example below shows how to “ step through” sequential memory locations.

DB: RETURN
2202 05

DB: RETURN
2203 C2

DB: RETURN
2204 82

3.3.2.4. Backstep Dot Command

The“-" command backs up Dot one address and prints its value and contents:

DB: . di spl ay Dot
2204 82

DB: - backstep one address
2203 C2

DB: - backstep one address
2202 05

3.3.2.5. Change Memory Command

To change the contents of the memory-location pointed to by Dot, type an equal sign followed by an
expression. The expression is evaluated, and the result stored at the current Dot address. Dot is then
advanced to the location whose address and contents are displayed.

The memory location is checked after the new value is stored to make sure it actually changed to the
correct value. If it didn't, an error messageis displayed. Error messages are displayed when an attempt
is made to alter non-RAM memory. In particular, many 6800-family interface devices (such as PIAS,
ACIAs, etc.) have registers that will not read the same as when written to.

DB: . di spl ay Dot
2203 C2

DB: =FF change nenory to FF
2204 01

55

Register Examine/
Change Commands

DB: - backspace and di spl ay
2203 FF

Warning

This command permits any memory location to be changed. Y ou can accidentally crash the
debugger, the program under test, or OS-9 if you incorrectly change their memory areas.

3.3.3. Register Examine/Change Commands

Several forms of the “:” register command can be used to examine one or al registers, or to change
a specific register's contents.

The “registers’ affected by these commands, are actually stored copiesin memory (“images’) of the
register values of _the.program under test. They are stored on the stack when the program is stopped
by a breakpoint or other interrupt. The value shown for the stack pointer register is the address ,of the
stack where the register values are stored. Before the program under test isfirst executed, the register
images must be made valid using the “E” command.

When a running program is interrupted by a[CONTROLJ+C| key or by a breakpoint, the registers are
once again stacked for inspection and/or change. Note that if you manually ater the value of the SP
register during program testing, the address of the stack and the register valueswill also change. If you
change the condition codes (CC) register, the E bit must be kept set to ensure all registers are rel oaded
properly when program execution is resumed.

3.3.3.1. Display All Registers Command.
To display all registers, type “:” followed by [RETURN]. For example:
DB:: [RETUR
SP CC A BDP X Y U PC
499 C4 20 1C 01 DD3E 239A 0000 240C

3.3.3.2. Display Specific Register Command

To display the contents of a specific register, enter a colon ": followed by the register name. The
Debugger will respond by displaying the current register contents in hex. Examples:

DB: : PC di splay PC register

C499

DB:: B di splay B register
007E

DB: : SP di splay SP register
42FD

3.3.3.3. Change Register Command

To assign anew valueto aregister, type the register name followed by an expression. The expression
is evaluated and stored in the register specified. When 8-bit registers are named, the expression given
must have a value that fitsin a single byte, or an error message is displayed and the register is not
changed.

Here are some examples:

DB: : X #4096 Set x register to 4096

DB.:DP O Set DP register to O

56

Breakpoint Commands

DB::D 24CF+:Y Set D register to 24CF plus contents of Y register

3.3.4. Breakpoint Commands

Breakpoints allow you to specify address(es) where execution of the program under test is to be
suspended and the debugger re-entered. When a breakpoint is encountered, the values of the MPU
registers and the “DB:” prompt will be displayed. After a breakpoint is reached,-registers can be
examined or changed, memory can be altered, or any other debugger command can be used. Program
execution can be resumed from the breakpoint location using the “G” command. Breakpoints may be
inserted at up to 12 different addresses.

The debugger uses the 6809 SWI instruction for breakpoints. They are inserted in memory in place of
the machine language instruction opcodes which are saved for restoration later. The SWI instructions
are automatically inserted and removed by the debugger at the right time so you will not see them
in memory.

When a SWI is executed it interrupts.the program and saves the register contents .on the stack so they
can be examined or changed using the “:” command. Because SWIs operate by temporarily replacing
an instruction opcode, there are three restrictions on their use:

1. Breakpoints cannot be used with programsin ROM.
2. Breakpoints must be located in the first (opcode) byte of the instruction.

3. User programs cannot utilize the SWI instruction for other purposes (but SWI2 and SWI3 can be
used).

When the breakpoint is encountered during execution of the program under test, the debugger is
reentered and the program'’s register contents is displayed using the same format as the “display
register” command.

3.3.4.1. “B” Set or Display Breakpoints Command

The B command-will insert a breakpoint if followed by an expression, or will display all present
breakpoint addresses if used alone.

DB: B 1C00 set breakpoint at 1C00
DB: B 4FD3 set breakpoint at 4FD3
DB: . di spl ay Dot
DB:
DB:

N

1277 39
B . set breakpoint at Dot (1277)

B di spl ay current breakpoints
1C00 4FD3 1277

3.3.4.2. “K” Remove Breakpoint Command

The K command removes (“kills”) a breakpoint at a specific addressif followed by an expression or
ALL (caution!) breakpoints if used alone;

DB: B di spl ay current breakpoints
1C00 4FD3 1277

DB: K 4FD3 kill breakpoint at 4Fd3

DB: B di spl ay current breakpoints
1C00 1277

DB: K [RETURN kill all remaining breakpoints

DB: B di spl ay current breakpoints

none |left so display is blank

57

Program Setup And Run Commands

DB:

3.3.5. Program Setup And Run Commands

3.3.5.1. Prepare To Execute Command

The Execute command consists of a“E” by a Shell-style command line. It prepares for testing of a
specific program module and must be used before the program is run.

The“E” command performsthe rough equivalent of what the OS-9 Shell doesto start aprogram except
for 1/0O redirection (<, >, >>), memory size override (“#"), and multitasking (“&") functions. It sets
up astack, parameters, registers, and datamemory areain preparation for execution of the program to
be tested. The“G” command is actually used to start running the program.

Note that thiscommand will allocate program and data area memory as appropriate. The new program
uses the debugger's current standard 1/0 paths, but can open other paths as necessary. In effect, the
debugger and the program become coroutines.

This command is acknowledged by aregister dump showing the program'sinitial register values. The
“G” command is used to begin actual program execution. The “E” command will set up the MPU
registers asif you had just performed an FSCHAIN service request as shown below:

hi gh R + <--Y
! !
! paraneter !
! area !
! !
R + <-- X, SP
| |
! !
! data area !
| |
| |
R +
I direct page !
| ow R + <-- U, DP
D = Paraneter area size
PC = Modul e entry point absol ute address
CC = (F=0), (1=0)
Example:

DB: E nyprogram
SP CC A BDP X Y U PC
OCF3 C8 00 01 OC OCFF 0DOO 0C00 9214
DB:

3.3.5.2. Go To Program Command

TheG (“Go") command isused to resume execution of aprogram under test under any of thefollowing
circumstances:

1. After the“E” command has been used to prepare a new program for execution.
2. Toresume program execution after a breakpoint.

3. To resume execution after a[CONTROLJ+[]] interrupt.

58

Utility Commands

If the “G” command is used to continue execution after a breakpoint that has not been removed,
the breakpoint will not be reinserted so the program will not “hang-up”. This features allows you to
execute breakpoints within loops without continually inserting and removing them if two breakpoints
are placed at different addresses within the loop.

Y ou can optionally put an expression after the G”. The result will be assigned to the PC register just
before execution is resumed in order to change the re-start address. Here is an example:

DB: E nyprogram prepare for execution
SP CC A B DP X Y U PC
OCF3 C8 00 01 OC OCFF ODO0O 0CO0 9214

DB: B 9466 put breakpoint at 9466
DB: G start program
BKPT:

SP CC A B DP X Y u PC
OCEA C0 FF 01 OC 4000 0DOO 0CO0 9466
DB: G resune after breakpoint

3.3.5.3. “L” Link To Module Command

Thiscommand (L followed by text) attemptsto link to the module whose nameisgiveninthetext line.
If successful, Dot is set to the address of the first byte of the program and is displayed. This command
is commonly used to find the starting address of an OS-9 memory module.

Example:
DB: L got oxy link to nodul e “gotoxy”

ECO0 87
DB:

3.3.6. Utility Commands

3.3.6.1. Clear and Test Memory Command

The “C” command followed by TWO expressions simultaneously performs a“walking bit” memory
test and clearsall memory between the two evaluated addresses. Thefirst expression givesthe starting
address, and the second the ending address (which must be higher). If any byte(s) fail the test, its
addressis displayed. Of course, only RAM memory can be tested and cleared.

Warning
This command can be dangerous for obvious reasons. Be sure of what memory you are
clearing.

Examples:

DB: C 1200 15FF test from 1200 to 15FF
12E4 i ndi cates bad nmenmory at 12E4 and
12E7 12E7

DB:C . .+256 [RETURN test from Dot to Dot +256

DB: i ndi cates no bad nmenory

3.3.6.2. Dump Memory Command

The M command, which isalso followed by two addresses, displays a screen-sized display of memory
contents in tabular form in both hexadecimal and ASCII form. The starting address of each line is

59

Using The Debugger

printed on the left, followed by the contents of the subsequent memory locations. On the far right is
the ASCII representation of the same memory locations. Those locations containing nondisplayable
charactershave periodsintheir place. The high order bit isignored for the display of ASCII characters.
For example:

DB: m f 100 f17f

F100 6225 306C 6120 EDAF 5FED 62ED 6439 E680 b%®la .O_.b.d9..
F110 C130 2504 C139 2303 1A01 39C0 301C F339 .0% .9#...9.0..9
F120 301F 6D61 2706 EC62 1CFE 2004 1A04 1A01 O.ma'..b..
F130 3264 391C FB20 F7A6 8081 2027 FA30 1F39 2d9.. '.0.9

F140 3416 A663 3D34 06A6 62E6 643D 3406 A664 4..c=4..b.d=4..d
F150 E667 8D13 A665 E666 8DOD 1CFE EC62 AEE4 .g...e.f..... b..
F160 2702 1A01 3268 393D E363 ED63 2402 6C62 '...2h9=.c.C$.1
F170 3934 36EC E426 041A 0120 20CC 0010 E764 946..&d

3.3.6.3. Search Memory Command

The*S’ command is used to search an area of memory for aone or two byte pattern. The search begins
at the present Dot address. The“S’ isfollowed by two expressions: the first expression is the ending
address of the search, and the second expression isthe datato be searched for. If thisvalueislessthan
256, a byte comparison is used, otherwise two bytes are compared. If a matching pattern is found in
memory, Dot is set to the address where it was located (which is displayed). If no match occurred,
another “DB:” prompt is displayed.

3.3.6.4. Shell Command

This command calls the OS-9 “shell” to execute one or more system command lines. Its format isa
dollar sign optionally followed by a shell command line. If the command line is given, the shell will
execute just that line and return back to the debugger. If the dollar signisimmediately followed by an
end-of-line, the shell will print prompts for one or more command linesin its usual manner. Y ou can
return to the (undisturbed) debugger by typing an end-of-file character (usually [ESCAPH).

This command is useful for calling the system utility programs and the Interactive Assembler from
within the debugger. For example:

DB: $di r
DB: $unl i nk nypgm ndir e; load test5

DB: $asm nypr ogr am o=mypr ogram bi n

3.3.6.5. “Q” Quit Debugger Command

This command (Q) causes the Interactive Debugger to terminate and return to OS-9 or the program
that called the debugger.

Example:

DB: Q
0S9:

3.3.7. Using The Debugger

The Interactive Debugger is mostly used for one of three purposes:

e Totest system memory and 1/O devices

60

Using The Debugger

e To“patch” the operating system or other programs
 To test hand-written or compiler-generated programs.

The simple assembly language program shown below is used in some of the examplesin this chapter
to illustrate how debug commands are be used with a real program. The program prints “HELLO
WORLD” and then waits for aline of input.

NAM EXAMPLE
USE / DO/ DEFS/ OS9DEFS

* Data Section

0000 ORG O

0000 LINNEN RVMB 2 LI NE LENGTH

0002 INPBUF RMB 80 LI NE | NPUT BUFFER

0052 RVB 150 HARDWARE STACK

00E7 STACK EQU .-1

00E8 DATMEM EQU . DATA AREA MEMORY S| ZE
* Program Section

0000 87CD0047 MOD ENDPGM NAME, $11, $81, ENTRY, DATMEM

000D 4558414D NAME PCS |/ EXAMPLE MODULE NAME STRI NG

0014 ENTRY EQU * MODULE ENTRY PO NT

0014 308D0020 LEAX CQUTSTR PCR QUTPUT STRI NG ADDRESS

0018 108E000C LDY #STRLEN GET STRI NG LENGTH

001C 8601 LDA #1 STANDARD QUTPUT PATH

001E 103F8C 0s9 | SWRLN VWRI TE THE LI NE

0021 2512 BCS ERROR BRA | F ANY ERRORS

0023 3042 LEAX | NPBUF, U ADDR OF | NPUT BUFFER

0025 108E0050 LDY #80 MAX OF 80 CHARACTERS

0029 8600 LDA #0 STANDARD | NPUT PATH

002B 103F88 0s9 | $RDLN READ THE LI NE

002E 2505 BCS ERROR BRA | F ANY |/ O ERRORS

0030 109F00 STY LINLEN SAVE THE LI NE LENGTH

0033 C600 LDB #0 RETURN W TH NO ERRORS

0035 103F06 ERROR 0s9 F$EXI T TERM NATE THE PROCESS

0038 48454CAC QUTSTR FCC /HELLO WORLD/ QUTPUT STRI NG

0043 0D FCB $0D END OF LI NE CHARACTER

0ooC STRLEN EQU *-QUTSTR STRI NG LENGTH

0044 268A06 EMOD END OF MODULE

0047 ENDPGM EQU * END OF PROGRAM

3.3.7.1. A Session With The Debugger

Below is an example of how DEBUG might be used with the sample program on the previous page.
DEBUG scaled from 0S-9, the$ commandisusedtotell SHELL toload“EXAMPLE” into memory,
the®L” command is used to link to it, etc.

0sS9: DEBUG run Debug program

I nteractive Debugger

DB: $LOAD / D1/ EXAMPLE | oad test program

DB: L exanpl e find programstart addr.
9200 87

DB: . display Dot; L set it to
9200 87 start address

DB: M. .+44 dunp program code

61

Using The Debugger

9200 87CD 0047 000D 1181 9300 1400 E845 5841 ...D......... EXA
9210 4D50 4CC5 308D 0020 1083 000C 8601 103F MPL.O..,..7
9220 8C25 1230 4210 8800 5086 0010 3F8B 2505 .%O0B...P...2. %

9230 109? 00C6 0010 3F06 4845 4CAC 4F20 574F ?. HELLO WO
9240 524C 440D A484 7F8D D4A6 AO2A F639 3432 RLD........ *.942
DB: E EXAMPLE prepare to run program

SP CC A B DP X Y U PC
ODF3 C8 00 01 OD ODFF OEOO 0ODOO 9214

DB: B . +ZE set breakpoint at 9223
DB: G [RETURN run program
HELLO WORLD

hel | o comput er

BKPT: br eakpoi nt encountered
SP CC A B DP X Y U PC
ODF3 CO 00 01 OD 0D02 000F ODOO 922E

DB:M: U : W20 RETURN di spl ay data area
0D00 FA31 6865 6C6C 6F20 636F 6D70 7574 6572 . 1lhell o conputer
0D10 ODDF CO005 E9F1 95FA 4C0D 1DFA OAC4 5900 L..... Y.
0D20 0B64 360B CFB1 0091 F820 SAE2 5AF8 5AF8 .d6...... Z.2. 7.
DB:. :U+2 [RETURN di splay relative data
0D02 68 area offset 2
DB: [RETURN step through data area
0D03 65
DB: [RETURN
0D04 6C
DB: [RETURN
0D05 6C
DB: Q qui t debuggi ng
0S9:

3.3.7.2. Patching Programs

“Patching” (changing the object code of) a program involves four steps:

1. Loading the program into memory using OS-9's“LOAD” command.

2. Changing the program in memory using the Debugger's“L” and “=" commands.

3. Saving the new, patched version of the program on adisk file using the OS-9 “SAVE” command.
4. Updating the program module's CRC check value using the OS-9 “VERIFY” command.

The fourth step is unique to OS-9 (as compared to other operating systems) and often overlooked.
However, it is essential because OS-9 will refuse to load the patched program into memory until its
CRC check value is updated and correct.

The example that follows shows how the program listed on page 4-1 is* patched” - this case changing
the“LDY #80" instruction to “LDY #32".

0S9: | oad exanpl e | oad programto be patched
0S9: debug run debug

62

Using The Debugger

Interactive Debugger
DB: L EXAMPLE
2000 87
DB:. .+28
2028 50
DB: =#32
2028 10
DB: Q quit debugger

0S9: SAVE TEMP EXAMPLE
0S9: VERI FY <TEMP >EX2
0S9: DEL TEMP

set dot to start addr of program
note nodul e starts at 2000

add offset of byte to change
current value is 50

change to deci mal 32

change confirmed

save patched nodule on file TEWMP
update CRC and copy to file EX2
TEMP no | onger needed

After the above procedure has been completed, the file EX2 contains a patched version of the module
with a correct module CRC value. It can be run and/or |oaded into memory as desired.

3.3.7.3. Patching OS-9 Component Modules

Patching modules that are part of OS-9 (modules contained in the “OS9Boot ” file) is a bit trickier
than patching regular program because the “COBBLER” and “OS9GEN" programs must be used to
create a new “OS9Boot ” file. The example below shows how an OS-9 “device descriptor” module
is permanently patched, in this case to change the uppercase lock of the device “/TERM” from “off”
to “on”. This example assumes a copy of the system disk isloaded in drive one (“/D1").

Caution
Always use acopy of your OS-9 system disk when patching it in case something goes wrong!

NOTE: SOME LEVEL TWO SYSTEMS DO NOT PERMIT SYSTEM MODULES TO BE
PATCHED - IN ORDER TO BE CHANGED, THEY MUST BE REASSEMBLED AND
INCLUDED IN A NEW BOOT DISK.

0s9: debug run debug

Interactive Debugger

DB: L TERM [RETURN set dot to addr of TERM nodul e

D300 87 (actual address will vary)

DB: . .+13 add of fset of byte to change
D313 00 current value is 00

DB: =1 change value to 1 for “QON
D313 01 change confirned

DB: Q exit debugger

0S9: COBBLER / D1 [RETURN wite new bootfile on /D1

0s9: VERI FY </ D1/ 0sS9BOOT >/ D1/ TEMP U updat e CRC val ue
0S9: OS9GEN / D1 [RETURN wite new bootfile again

TEVP [RETURN name of file with good CRCs
ESCAPE End-of -file key for OS9GEN

63

Appendix A. Error Messages
A.l. Text Editor Error Messages

BAD MACRO NAME

This error is caused by trying to close a macro definition, when the first line in the macro does
not start with alegal macro name. The editor will allow you to close definition of a macro after
you have given it alegal hame. See the section on macro names.

BAD NUMBER

Anillegal numeric parameter has been entered. Thisisusually caused by entering a number that
islarger than 65535.

BAD VAR NAME

This error is caused by specifying avariable name that isillegal. Usually the variable name has
been omitted, or you inadvertently included a“$" or “\#' character in the commands parameter
list.

BRACKET MISMATCH

Thisis caused by either having one too many left or right brackets (they must be used in pairsto
repeat a command sequence). This error may also be caused by nesting the brackets too deeply.

BREAK

This message is printed when you type a (CONTROL|+d) or (CONTROLJHQ)) to interrupt whatever
the editor isdoing. After printing the error message, the editor will returnto command entry mode.

It is important to remember that the printout of edit command results may not be synchronized
with the actual operation of acommand.

DUPL MACRO

This error is caused by trying to close a macro definition when there is another macro with
the same name. The problem may be solved by renaming the macro before trying to close its
definition.

END OF FILE

This means that there is no more text remaining in the input file that is being read.
END OF TEXT

This means that you have reached the end of the edit buffer. Thisis used only as areminder.
FILE CLOSED

This means that you tried to write to a file that was never opened. You should either specify
a write file when starting up the editor from OS-9, or open an output file using the “.WRITE”
pseudo macro.

MACRO IS OPEN
You must first close the macro definition before using the command that caused this error.
MISSING DELIM

The editor could not find a matching delimiter to compl ete the string that you specified. A string
must be completely specified on asingleline.

65

Assembler Error Messages

NOT FOUND
The editor can not find the string or macro that was specified in acommand parameter.
UNDEFINED VAR

This error occurs when you try to use a variable that was not specified in the macros definition
parameter list. A variable parameter may be used only in the macro in which it is declared. See
the section of this manual on macros.

WHAT ??

The editor did not understand a command that you typed. Thisis usually caused by entering a
command that does not exist (misspelling its name).

WORKSPACE FULL

This error is caused by entering a command that tried to insert more text into the buffer than
there was room for. The.problem may be solved by increasing the workspace size using the “M”
command, or by removing some text from the edit buffers.

A.2. Assembler Error Messages

BAD LABEL

The statement's label has an illegal character or does not start with A-Z or a-z.
BAD INSTR

The assembler did not recognize the instruction given in the source statement.
ADDRESS MODE

The addressing mode specified is not legal for the instruction.
OUT OF RANGE

The destination (label) of the branch istoo far to use a short branch instruction (e.g. the a 16-bit
offset using a LBRA-type instruction must be used).

REG NAM

The register name required is missing or misspelled.
REG SIZES

TheregistersspecifiedinaTFR or EXG instruction were of different lengths(e.g., 8 bit vs. 16 bit).
INDEX REG

The name of an index register is required by the instruction but none was found.
] MISSING

A closing bracket was omitted (indirect addressing).
CONST DEF

Theinstruction requires a constant or an expression which ismissing or in error.
LABEL NOT ALLOWED

Thistype of statement cannot have alabel.

66

Assembler Error Messages

NEEDS LABEL

The statement is required to have alabel.
IN NUMBER

A constant number (decimal, hex or binary) istoo large or had anillegal character.
DIV BY O

A division with a zero divisor was attempted within an expression.
MULT OVERFL

Theresult of amultiplication is greater than 65535 (two bytes).
EXPR SYNTAX

The arithmetic instruction isillegally constructed or is missing an operand following an operator.
PARENS

Thereis an unequal number of left and right parentheses in the expression.
RESULT>255

The result of the expression is too large to be represented in the one-byte value used by the
instruction.

REDEFINED NAME

The label was defined previously in the program.
UNDEFINED NAME

The symbolic name was never defined in the program.
PHASING

The statement's label had a different address during the first assembly pass. This usually happens
when an instruction changes addressing modes and thus its length after the first pass because its
operand becomes defined after the source lineis processed. Usually the error occurson all 1abels
following the offending source line.

MEMORY FULL

The symbol table became full - more memory is required to assembl e the program.
OPT LIST

Anillegal or missing option in the assembler command line or in an OPT statement.
INPUT PATH

A read error occurred on the input path.
OBJECT PATH

A write error occurred on the object file path.
CAN'T OPEN PATH

The file cannot be opened (sourcefile) or created (object file).

67

Interactive Debugger Error Codes

A.3. Interactive Debugger Error Codes

OILLEGAL CONSTANT
The expression included a constant that had an illegal character or was too large (> 65535).
1DIVIDE BY ZERO
A division was attempted using a divisor of zero.
2 MULTIPLICATION OVERFLOW
The product of the multiplication was grester then 65535.
3 OPERAND MISSING
An operator was not followed by alegal operand.
4 RIGHT PARENTHESIS
Right paren is expression missing: misnested parentheses.
5 RIGHT BRACKET MISSING
Misnested brackets.
6 RIGHT CARAT MISSING
Misnested byte-indirect (< and >).
7 INCORRECT REGISTER
Misspelled, missing or illegal register name followed the colon.
8 BYTE OVERFLOW
Attempted to store a value greater than 255 in a byte-sized destination.
9 COMMAND ERROR
Misspelled, missing or illegal command.
10 NO CHANGE
The memory location did not match the value assigned to it.
11 BREAKPOINT TABLE FULL
The maximum number of twelve breakpoints already exist.
12 BREAKPOINT NOT FOUND
No breakpoint exists at the address specified.
13 ILLEGAL SwiI

A SWI instruction was encountered in the user program at an address other than a breakpoint.

68

Appendix B. Quick Reference

B.1. Editor Quick Reference Summary

.macr o_name paraneters The".” command is used to execute a macro.

't ext Comment.

t ext Insert the text line before the current edit pointer position.

RETURN Move edit the pointer to the next line and display it.

+n Move the edit pointer forward n lines and display.

-n Move the edit pointer backward n lines and display.

+0 Move the edit pointer to the last character of the line.

-0 Movethe edit pointer to thefirst character of the line and display
it.

>n Move the edit pointer forward n characters.

<n Move the edit pointer backward n characters.

AN

/

[commands] n

Move the edit pointer to the beginning of the text.
Move the edit pointer to the end of the text.

Repeat the sequence of commands between the two brackets n
times.

Skip to the end of the innermost loop or macro if the fail flag is
off, otherwise turn the fail flag off and resume execution.

An Set the SEARCH/CHANGE anchor to column n, restricting
searches and changes to strings starting in the nth column.

AO Turn off the SEARCH / CHANGE anchor.

Bn Make buffer n the primary buffer.

Cnstrlstr?2

Change the next n occurrencesof str 1 tostr 2.

Dn Delete n lines.

Enstr Extend (add the string to the end of) the next n lines.

Gn Get n lines from the secondary edit buffer starting from the top
of the secondary buffer. The lines areinserted before the current
position in the primary edit buffer.

Instr Insert a line containing n copies of the st r before the current
edit pointer position.

Kn Kill n characters starting at the current edit pointer position.

Ln List (display) the next n lines from the current edit pointer
position.

M n Change workspace (memory) sizeto n bytes.

69

Editor Quick Reference Summary

Pn

Rn

Snstr

Tn

U

Vn

Wn

Xn

.CHANGEnNnstrlstr?2

.DEL str
.DIR

.EOB

.EOF

.EOL

F

.LOAD st r

.MACstr

.NEOB

.NEOF

.NEOL

NEW

.NSTRstr

.READ str

S

SAVEstrlstr?2

SEARCH N st r

Put (move) n lines from the present edit position in the primary
buffer to the present edit position in the secondary buffer.

Quit editing and return to OS-9.

Terminate macro definition and return to the “E:” prompt.
Read n lines from the buffer'sinput file.

Search for the next n occurrencesof str .

Tab to column number n of the present line.

Unextend (truncate) line at the current edit position.

Turn verify mode (display text changes) off if n =0, or onif n
<>0.

Write n lines to the buffer's output file.

Display n lines of text that precede the edit position.
Similar to “C” command.

Delete the macro with the name specified by st r .
Display the editor's directory of buffers and macros.

Test for end of buffer, if the edit pointer isat the end of the buffer
succeed, otherwisefail.

Test for end of file.

Test for end of line. If the edit pointer is at the end of the line,
this command will succeed, otherwise fail.

Exit innermost loop or macro and set the fail flag.
L oad macros from the path specified by “st r”.

Open the macro specified by “st r” for definition. If an empty
string is given, a new macro will be created.

Test for not end of buffer.
Test for not end of file.
Test for not end of line.

Write lines to the output file up to the current line, then try to
read an equal amount from the input file.

Test if “str” does not match characters at the current edit
position.

Open an filefor reading, using “st r ” asthe pathlist.
Exit the innermost loop or macro and succeed.

Save the macro(s) specified in “st r 1” on the file specified by
the pathlistinst r 2.

Similar to the“S” command.

70

Interactive Debugger
Quick Reference

SHELL t ext

SIZE

STARN

STRstr

WRITEstr

ZEROnN

B.2. Interactive Debugger Quick Reference

[SPACH expr

.expr

=expr

RETURN

‘reg
:reg expr

Etext

G

Gexpr

L text

B

B expr

K

K expr

M expr 1 expr 2
Cexprlexpr2
Sexprlexpr?2

$t ext

Q

Cadll OS-9 shell to execute the command line.

Display the size of memory used and the total amount of memory

available in the workspace.

Test if n isequal to asterisk (infinity).

Testif “st r” matches the characters at the current edit position.

Open an file for writing using “st r ” as pathlist.

Test n to seeif itiszero.

Evaluate expression and display result in hex and decimal

Print Dot address and contents

Restore last DOT, print address and contents
Set Dot to result, print address and contents
Set memory at Dot to result

Backup Dot, print address and contents
Move Dot forward, print address and contents
Display all register contents

Display specific register contents

Set register to result

Prepare for execution

Go to program

Go to program at result address

Link to module named, print address
Display al breakpoints

Set breakpoint at result address

Kill all breakpoints

Kill breakpoint at result address

Dump memory

Clear and test memory

Search memory for pattern

Run Shell command line

Quit debugging

71

72

Appendix C. Example Assembly
Language Programs

C.1. Assembly Language Programming Examples

The following pages contain three assembly language programming examples. They are:

UpDn
PIA

P

-Paralldl interface driver.

-Parallel interface descriptor.

-Program to convert input case to upper or lower.

These programs are given only as examples of assembly language programs and should not be
considered as current system software.

Example C.1. UpDn - Assembly L anguage Programming Example

vAvAvEvEwRw

0000
000D
0011
0081

0000
0001
0002
0003
OCOFD
01GC5

L R I A T

*

*

*

*

87CD0O05C
757064EE

*

*

this is a programto convert characters from
| ower to upper case (by using the u option)
upper to |l ower case (by using no option)
the nmet hod of passing the paraneters through

0s9 is used here (systemcalls)

to use type

"updn u(opt for

file include in assenbly

| ower to upper) <'input

nam UpDn

i fpl

use / DO/ def s/ OS9def s

endc

0S-9 System Definition File Included

opt
ttl

nodul e header macro

nod
UDNAM fcs
TYPE set
REVS set

>' out put' "

Assenbl y Language Exanpl e

UDSI Z, UDNAM TYPE, REVS, START, S| ZE

nodul e name for nenory
PRGRMFOBJCT nod type
nod revision

[updn/

REENT+1

storage area for variables

act ual

TEMP rmb
UPRBND rnb
LWRBND rnb
rmb
rmb
S| ZE equ

code starts here

1
1
1

250
200

tenp storage for read

storage for
storage for
storage for
storage for
end of data

upper bound
| ower bound
st ack
par anet er s
area

73

Assembly Language
Programming Examples

* X register is pointing to Start of parameter area

* y register is pointing to end of paraneter area,

* this is howto get a paraneter that is passed on

* the conmand |ine and where to | ook for it

*
0011 START equ * start of executable
0011 A680 SRCH | da , X+ search paraneter area
0013 84DF anda #$df meke upper case
0015 8155 cnpa #U see if a U was input
0017 2703 beq UPPER branch to set uppercase
0019 810D cnpa #$0d see if a carriage return
001B 26F4 bne SRCH go get anot her char

*

* fall through to set upper to | ower bounds
*

001D 8641 lda # A get | ower bound

001F 9702 sta LWWRBND set it in storage area
0021 865A lda #Z get upper bound

0023 9701 sta UPRBND set it in storage area
0025 2008 bra START1 go to start of code

*

* set |ower to upper bounds
*

0027 8661 UPPER lda #'a get | ower bound
0029 9702 sta LWWRBND set it in storage
002B 867A lda #'z get upper bound
002D 9701 sta UPRBND set it in storage

*

* converting code

* this part uses the | $READ and

* the |$WRI T systemcalls

* read the systenms progranmers manua
*

for information relating to them
*

002F 30C4 START1 leax temp,u get storage address
0031 8600 lda #0 standard i nput

0033 108E0001 I dy #$01 nunmber of characters
0037 103F89 LOCP 0s9 | $READ do the read

003A 2515 bcs EXIT exit if error

003C D600 | db TEMP get character read
003E D102 cnpb LWRBND test char bound

0040 2506 bl o VWRI TE branch if out

0042 D101 cnpb UPRBND test char bound

0044 2202 bhi VWRI TE branch if out

0046 C820 eorb #$20 flip case bit

0048 D700 VRI TE sthb TEMP put it in storage
004A 4C i nca reg 'a' stand out put
004B 103F8A 0s9 [$VWRI T wite the character
004E 4A deca return to stand i nput
004F 24E6 bcc LOOP get char if no error
0051 C1D3 EXIT cmpb #E$SEOF isit an ECF error
0053 2601 bne EXI T1 not eof, |eave carry
0055 5F clrb clear carry, no error
0056 103F06 EXI T1 0s9 F$EXI T error returned, exit
0059 260409 enod | ast conmand

005C upsl z equ * size of program

Assembly Language
Programming Examples

Example C.2. PIA - OUTPUT Parallel Interface Driver

LR I S R I I R I

* Device Driver

0000 87CDOOCD

000D 07
000E 5049C1

0011 02

*
*

*

0012 28432931

D OO0OF
D OO0OF
D 0011

W 0022 160012
0025 1600A0
W 0028 160053
002B 16009A
002E 160097
W 0031 16007A

0034 00
0035 80

NAM Pl A
i fpl
use / DO/ def s/ os9def s
use / DO/ def s/ scf defs
use / DO/ def s/ syst ype
endc
ttl QUTPUT Paral lel Interface Driver
for PIA Port
nod Pl ASI Z, Pl AN, DRI VR+OBJCT,
REENT+1, Pl AENT, Pl AVEM
fcb EXEC. +UPDAT.
Pl AN fcs "PlIA" MODULE NAME
fcb 2 revi si on number
use / DO/ def s/ copyri ght
EIE IR I I I I I I I I I I I I I R R I b I I I b b
*
(O 1981 Mcroware Systens Corporation *
*
EIE IR I I I I I I I I I I I I I R R I b I I I b b
FCC /(C)1981M crowar e/
ORG V. SCF STATI C STORAGE
Pl ADDR rnmb 2 Pia True Port address
PI AMEM equ TOTAL STATI C STORAGE
Pl AENT LBRA PPINIT
LBRA PPEXI T read
LBRA PPVWRI T
LBRA PPEXIT get status
LBRA PPEXIT set status
LBRA PPTERM
PPMASK fcb 0 FLI P (NONE)
fcb $80 | RQ POLLI NG MASK
fcb 4 (low) PRIORITY

0036 04

kkhkkkkhkkkk*k

* PPINIT -

* Passed:

*

0037 A341
0039 A6A811
003C 8114
003E 2515
0040 E6A826

Initialize PIA

PPINIT

LDX
LDA
CVPA
BLO
LDB

(U =Static storage

(Y)=Initial Device Descriptor

V.PORT,Y get PIA port addr
MBOPT, Y get option byte count
#PD. PAR- PD. OPT pi a side given?
PPl N15 .. No; default B-side
PD. PAR- PD. OPT+MBDTYP, Y

75

Assembly Language
Programming Examples

0043
0045
0047
0049
004B
004D
004F
0051
0053
0055
0057
0059
005B
005D
005F
0061
0063
0067
006A
006D
006F
0071
0073
0075
0077
0079
007B

007C

007E
0080
0082
0084
0086
0088
008A
008C
008E
0090
0092
0094
0096
0098
009A
009C
009F
00A1
00A4
00A5

E746
C101
2604
C63E
200C
C102
2604
860E
A70E
3002
Co62F
6F01
AF4F
3414
3001
1F10
308DFFCD
318CAF
103F2A
250D
3514
86FF
1A10
ED84
AG84
1CEE
39

PPI N10

PPI N15

PPI N20

PPCLRQ

3592 PPI N9O

kkkkhkkkhkkk

* PPWRIT -

* % F X

AEAF
E646
1A10
A784
C101
2608
C637
E701
C63F
E701
8D34
6D01
2BDF
E644
E745
8E0000
1CEF
103F0A
5F
9E4B

Passed:

Ret ur ns:

STB
CvPB
BNE
LDB
BRA
CvPB
BNE
LDA
STA
LEAX
LDB
CLR
STX
PSHS
LEAX
TFR
LEAX
LEAY
os9
BCS
PULS
LDA

STD
LDA
ANDCC
RTS

PULS

wite one char

V. TYPE, U
#a. si de
PPI N10
#3$3E

PPI N20
#MP. L2
PPI N15
#3$0E
$0E, X
2, X
#3$2F

1, X

Pl ADDR, U
B, X

1, X

X, D

PPMASK, PCR
<PPI RQ PCR

F$I RQ
PPl N9O
B, X
H$FF
#1 RQV
0, X
0, X

save pia type

A-side PIA?

.. No

A-side non auto-latch

Sout hwest ACI A?

.. No
setup SWIPC MP-L2 card
note: nust be b.side

Adj ust address B-side
B-side is auto-latch
reset PIA

save port address
save ctl code, addr

addr of SERVI CE RQUTI NE
ADD to | RQ POLLI NG TBL
..Error; return it

di sable interrupts
Initialize Pia

Clear IRG

#$FF- | RQVt CARRY enabl e intrpts

A X, PC

to PIA

(U=Static Storage
(Y)=Path Descri ptor
(A)=char to wite to PIA

CC, B set

PPWRI T

PPWR10

if Error

LDX Pl ADDR, U
LDB V. TYPE, U
ORCC #l RQM
STA 0,X

CMPB #a. si de
BNE PPWR10
LDB #%$37

STB 1, X

LDB #$3F

STB 1, X

BSR PPEXI T
TST 1, X

BM PPCLRQ
LDB V. BUSY, U
STB V. WAKE, U
LDX #0

ANDCC #$FF- | RQV
0os9 F$SLEEP
clrb

| dx D. PRCC

return

Return (B)=error

port addr

get pia type

di sabl e interrupts
Wite char to Pia
A-side port?

. No; auto-I|atching

| atch A-side output

Del ay shortly fast PIA
character already gone?
.Yes; renove interrupt

enabl e interrupts
wait for 1/Oto occur
clear carry

76

Assembly Language
Programming Examples

00A7
00AA
00AC
00AD

00AE
00BO
00B2
00B5
00B8

00B9
00BB
00BD
00BF
ooci
00C3
00Co6
00C8
00C9

00CA
00CD

E68836
2701
43

39

kkkkhkkkhkkk

PPWRI0

[db P$SI GN, X
beq PPWRI0
coma

RTS

* PPTERM - Renove Pl A from system

AEAF
6F01
8E0000
103F2A
39

PPTERM

khkkkhkkhkkhkkhkkhkkhkhk*k

* PROCESS PI A | NTERRUPT

* Passed:

AEAF
6D84
A645
2707
C601
103F08
6F45
5F

39

FDA2DE

LDX Pl ADDR, U

CLR 1,X
LDX #0
059 F$IRQ
RTS

(A) =PI A Status Reg

PPI RQ LDX Pl ADDR, U
TST 0, X
LDA V. WAKE, U
BEQ PPEXIT
LDB #S$SWAKE
0s9 F$SEND
clr V. WAKE, U
PPEXI T clrb
RTS
enod
Pl ASI Z equ *

Example C.3. P - Device Descriptor for “P”

0000

000D
000E
000F
0011
0012

0013
0014
0015
0016

khkkkkhhkkkkkkkkx

nam

i fpl
endc

ttl

* PRI NTER devi ce nodul e

*

87CD0O035

02
FF
E040
18
00

* Default

00
00
01
00

nod

fcb
fcb
fcb
fcb
fcb

path options

fcb
fcb
fcb
fcb

Si gnal
.No; return

reset PIA
remove Pl A

frompolling tbl

Pl A port addr

renove interrupt
User's Process I D

.No; return
(wake up)

Devi ce Descriptor for "P"

PRTEND, PRTNAM DEVI C+OBJCT,

VRl TE.

$

FF

AP

PRTNAM *- 1

DT. SCF

O, OO

wai ting?

REENT+1, PRTMGR, PRTDRV

node

port address

option byte count
Devi ce Type: SCF

case=UPPER and | ower
backspace=BS char only

del et e=CRLF
no auto echo

77

Assembly Language
Programming Examples

0017
0018
0019
001A
001B
001C
001D
001E
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
002A
002B
002C
002F

0032
0035

01
00
00
42
08
18
0]}
00
04
01
17
00
00
5F
07
01
00
0000
DO
BO
5343C6
5049C1

A9B118

PRTNAM

PRTMGR
PRTDRV

PRTEND

fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fdb
fcs
fcs
fcs
fcs

enmod

EQU

1

0

0

66
C$BSP
C$DEL
C$CR

0
C$RPRT
C$RPET
C$PAUS
0

0
C$BELL
Pl ASI D
0

0

" pr

"

" SOE"
"PILA"

*

auto line feed on
no nulls after CR
no page pause

i nes per page
backspace char
delete line char
end of record char
no end of file char
reprint |ine char
dup last line char
pause char

no abort character
no interrupt character
backspace echo char
I ine overfl ow char
Printer Type
undefined baud rate
no echo device

devi ce nane

room for name patching
file manager

driver

78

Colophon

This book is scanned from an OS-9 manual found on the Internet in 2017.

79

80

	OS-9 Editor/Assembler/Debugger Manual
	Table of Contents
	Chapter 1. Text Editor
	1.1. Introduction to the Macro Text Editor
	1.2. Getting Started
	1.3. The Edit Command Line
	1.4. Edit Buffers
	1.5. Edit Pointers
	1.6. Entering Commands
	1.7. Parameters
	1.7.1. Numeric Parameters
	1.7.2. String Parameters
	1.7.3. Multiple Parameters

	1.8. Syntax Notation
	1.9. Basic Commands
	1.9.1. Change String
	1.9.2. Delete Characters
	1.9.3. Delete Lines
	1.9.4. Extend Lines
	1.9.5. Unextend Line
	1.9.6. Insert Line
	1.9.7. Insert String
	1.9.8. List Following Lines
	1.9.9. List Previous Lines
	1.9.10. Memory Size Adjust
	1.9.11. Memory Size Display
	1.9.12. Move Characters Backward
	1.9.13. Move Characters Forward
	1.9.14. Move To End Of Text
	1.9.15. Move To Next Line And Display
	1.9.16. Move To Start Of Text
	1.9.17. Move Lines Backwards
	1.9.18. Move Lines Forward
	1.9.19. Quit Editor
	1.9.20. Search For String
	1.9.21. Set Anchor Column
	1.9.22. Shell Command
	1.9.23. Tab
	1.9.24. Verify On/Off

	1.10. Advanced Commands
	1.11. File Manipulation Commands
	1.11.1. New
	1.11.2. Open Input File
	1.11.3. Create Output File
	1.11.4. Read From Input File
	1.11.5. Write To Output File

	1.12. Buffer Manipulation Commands
	1.12.1. Display Buffer And Macro Directory
	1.12.2. Change and/or Create Primary Edit Buffer
	1.12.3. Move Lines From Primary Buffer
	1.12.4. Move Lines To Primary Buffer

	1.13. Looping And Conditionals
	1.13.1. Looping
	1.13.2. The Fail Flag
	1.13.3. Conditional Statements

	1.14. Testing Commands
	1.14.1. Test For End of File
	1.14.2. Test For Not End of File
	1.14.3. Test For End of Buffer
	1.14.4. Test For Not End of Buffer
	1.14.5. Test For End of Line
	1.14.6. Test For Not End of Line
	1.14.7. Test For Zero
	1.14.8. Test For Star
	1.14.9. Test For String Match
	1.14.10. Test For String Mismatch
	1.14.11. Exit And Clear
	1.14.12. Exit And Fail

	1.15. Macros
	1.15.1. Macro Headers
	1.15.2. Parameters and Variables
	1.15.3. Creating and Editing Macros

	1.16. Macro Commands
	1.16.1. Comment
	1.16.2. Load Macros From File
	1.16.3. Save Macros
	1.16.4. Delete Macro

	Chapter 2. Assembler
	2.1. Introduction
	2.2. Installation
	2.3. Assembly Language Program Development
	2.4. Operational Modes
	2.5. Running the Assembler
	2.6. Source Program Format and Syntax
	2.6.1. Assembler Source Files
	2.6.2. Source Statement Fields
	2.6.2.1. Label Field
	2.6.2.2. Operation Field
	2.6.2.3. Operand Field
	2.6.2.4. Comment Field

	2.7. Expressions
	2.7.1. Operands
	2.7.1.1. Decimal Numbers
	2.7.1.2. Hexadecimal Numbers
	2.7.1.3. Binary Numbers
	2.7.1.4. Character Constants
	2.7.1.5. Symbolic Names
	2.7.1.6. Program Instruction Counter
	2.7.1.7. Program Data Counter

	2.7.2. Arithmetic and Logical Operators
	2.7.3. Symbolic Names
	2.7.4. Instruction Addressing Modes
	2.7.4.1. Inherent Addressing
	2.7.4.2. Accumulator Addressing
	2.7.4.3. Immediate Addressing
	2.7.4.4. Relative Addressing
	2.7.4.5. Extended and Extended Indirect Addressing
	2.7.4.6. Direct Addressing
	2.7.4.7. Register Addressing

	2.7.5. Overview of Indexed Addressing Modes
	2.7.5.1. Constant Offset Indexed
	2.7.5.2. Program Counter Relative Indexed
	2.7.5.3. Accumulator Offset Indexed
	2.7.5.4. Auto-Increment and Auto-Decrement Indexed

	2.8. Assembler Directive Statements
	2.8.1. END Statement
	2.8.2. EQU and SET Statements
	2.8.3. FCB and FDB Statements
	2.8.4. FCC and FCS Statements
	2.8.5. IF, ELSE, and ENDC Statements
	2.8.6. MOD and EMOD Statements
	2.8.7. NAM and TTL Statements
	2.8.8. OPT Statement
	2.8.9. OS9 Statement
	2.8.10. ORG Statement
	2.8.11. PAG and SPC Statements
	2.8.12. SETDP Statement
	2.8.13. USE Statement

	2.9. Assembly Language Programming Techniques
	2.9.1. Program Sections and Data Sections
	2.9.2. Program Area
	2.9.3. Writing Position Independent Code
	2.9.4. Accessing The Data Area
	2.9.5. Additional Comments

	2.10. Using the DEFS Files
	2.10.1. The OS9Defs File
	2.10.2. The SCFDefs File
	2.10.2.1. Static Storage Requirements
	2.10.2.2. Character Definitions
	2.10.2.3. File Descriptor Offsets

	2.10.3. The RBFDefs File
	2.10.3.1. Random Block Path Descriptor Format
	2.10.3.2. State Flags
	2.10.3.3. Device Descriptor Format
	2.10.3.4. File Descriptor Format
	2.10.3.5. Segment List Entry Format
	2.10.3.6. Directory Entry Format
	2.10.3.7. Static Storage

	2.10.4. The SysType File

	Chapter 3. Interactive Debugger
	3.1. Introduction
	3.1.1. Installation
	3.1.2. Calling the Interactive Debugger
	3.1.3. Basic Concepts

	3.2. Expressions
	3.2.1. Constants
	3.2.2. Special Names
	3.2.3. Register Names
	3.2.4. Operators
	3.2.5. Indirect Addressing
	3.2.6. Forming Expressions

	3.3. Debug Commands
	3.3.1. Calculator Command
	3.3.2. “Dot” and Memory Examine/Change Commands
	3.3.2.1. Display Dot Command
	3.3.2.2. Change Dot Command
	3.3.2.3. Advance Dot Command
	3.3.2.4. Backstep Dot Command
	3.3.2.5. Change Memory Command

	3.3.3. Register Examine/Change Commands
	3.3.3.1. Display All Registers Command.
	3.3.3.2. Display Specific Register Command
	3.3.3.3. Change Register Command

	3.3.4. Breakpoint Commands
	3.3.4.1. “B” Set or Display Breakpoints Command
	3.3.4.2. “K” Remove Breakpoint Command

	3.3.5. Program Setup And Run Commands
	3.3.5.1. Prepare To Execute Command
	3.3.5.2. Go To Program Command
	3.3.5.3. “L” Link To Module Command

	3.3.6. Utility Commands
	3.3.6.1. Clear and Test Memory Command
	3.3.6.2. Dump Memory Command
	3.3.6.3. Search Memory Command
	3.3.6.4. Shell Command
	3.3.6.5. “Q” Quit Debugger Command

	3.3.7. Using The Debugger
	3.3.7.1. A Session With The Debugger
	3.3.7.2. Patching Programs
	3.3.7.3. Patching OS-9 Component Modules

	Appendix A. Error Messages
	A.1. Text Editor Error Messages
	A.2. Assembler Error Messages
	A.3. Interactive Debugger Error Codes

	Appendix B. Quick Reference
	B.1. Editor Quick Reference Summary
	B.2. Interactive Debugger Quick Reference

	Appendix C. Example Assembly Language Programs
	C.1. Assembly Language Programming Examples

