BASICO9

Programming Language Reference Manual

BASIC09: Programming Language Reference Manual
Copyright © 1983 Microware Systems Corporation. All Rights Reserved. Basic09 is a trademark of Microware
Systems Corporation and Matorola Inc.

This document and the software it describes are copyrighted products of Microware Systems Corporation. Reproduction by any means is
strictly prohibited, except by prior written permission from Microware Systems Corporation.

The information contained herein is believed to be accurate as of the date of publication, however, Microware will not be liable for any
damages, including indirect or consequential, resulting from reliance upon the software or this documentation.

111 oo [0 Tox 1 oo T 1

Comments 0N BASICOO ... 1

The History of BASICO9iiiiiiii et e e e e e e e e e e e e e eanaees 2
Introduction to BASICO9 ProgramiMingc.uueeeuiieiiiieiiieeeiieeeieesiseeaineesneesinsesanaesaneenes 3
RTAY g SR 0o =10 3

A SIMPle BASICO9 PrOgramieeueeiiieeiie et e e e et e e s e e e e et e et e et e e et e e e eeaaeees 3
Basic Programming Techniques: Loops and Arithmeticc.ccoviviiiiiiiin e, 6
Listing Procedure NBIMESccvuuieiiieiiii e ee e e e e e e e e e e et e e e e e eeeens 7
ReqUESLING MOIE MEIMONY . oovniii et e e e e e e e e e e et e e e eeanas 7
Storing and ReCalliNg Programsciuuniiiii e e e e e e e e 7

HOW t0 Print Program LiStNGSuovevniiiiieii i e e e e e e e e s e et e e e e eans 8
BASICO9'S FOUIr MOUES:uieiiiiiieeeeii ettt et e et e e et e e e e 9
More about the WOIKSPACE...cvviiiii e e e e e e e e e 10
WHhEre t0 g0 FrOm HEIE?iii e et 10
Y= (= 1 T o [TP 11
System Mode COMMANGSuuiiiiiieiii e e e e e e e e e e e e et e e e eaaeees 12

0T Y/ oo U PRTSPN 17
Overview Of Edit COMMENGSoeiiviiiieiiiiii e e s 17

HOW the EdItOr WOTKS ... cceiviieeiei et e e e e e 17
Line-Number Oriented EAItiNGccouiiiiiiiiii e e e e e e e 18
String-Oriented EdItiNgocoiiiiii i 19
Moving the Edit POINTErooiiiiii e e 19

1S = 1] o I = 19

(1= T i o R =N 19

(TS 1o T 1PN 20

Search: FINAING SENQGS «..ovnniiiici e e e eans 20

Change: String SUBSLITULIONcovuiiiicie e e e 20

EXECULION IMIOTE ...t e et e e et e e e et e e e et e e e e et e e e e eaan s 23
01T T o e (T 23
Execution Mode: Technically Speakingcocovvieiiiiiiiiici e 23
(1= 010 o 1Y, o o L= P 25
Overview of DEDUG MOOEccuuiiii e 25
Debug Mode COMMENGAScouuiiiiieii e e e e e e eanas 25
Debugging TEChNIQUESccuuiiiici e e e e e e e e e eens 27
Debug Mode as a Desk CalCUIAOrcc.uueiiiiiiiii e e e e 28

Data Types, Variables and Data StrUCIUIEScevuiiiiiieiie e e e e e e e e eae e 29
Why are there different data types?oviviiiiii e 29

DAl SITUCLUIES ...t ettt et e et et e et e e e e e en e e ennns 29
PN (o g Tl B = T Y o= 29

LI €L = 1 =PRSS 30

TYPE INTEGER ..ot 30

TYPE REAL . e 30

TYPE STRING ..ot e et e e e et e e e eeaaaeeeee 31

TYPE BOOLEAN ..coiiii e 31

AULOMELIC TYPE CONVEISION ...evuiiiiii i e e e et e e e e e e e e e e e e et e e et e eanaees 32

L0102 0 | £ TP 32
NUMENC CONSEANTSvueeeeiie ettt e et e et et e e e et e e e e et e e e eaeaaeeeannns 32

B00I€AN CONSIANES ... eieeeii ettt e e e e et e e e et e 32

S 1o 000 41 v | £ P 33

VAHBDIES ... 33
Parameter VariableSiiiiiiiei e 33

N = V£ T PP 34
(00 1o L= DT =)Y o= 34
Expressions, Operators, and FUNCHIONSccuuiiiiieiii e e e e e e e e e eaen 35
Evaluation Of EXPrESSIONSuuiiiiieiiiieiieeei e e e e e e e e e e e e e e et e e e e e et e e et e eanaaees 35
(007 = o £ T PPN 35
OpErator PreCEOENCE .. .o 36

0 0 1o PP 37

BASIC09 Reference Manual

Program Statements and SIUCIUIEoiiiieii e e e e e e e e e e eenes 39
Program SHIUCTUIE ... e e e e e e e ae e en 39
LiNE NUMDEIS ... e e e e e e e et e e et eeaa e e aan s 39
ASSIGNMENT SEAEEMENES ...uuiiii e e e e e e e e e e et e e e e eeaes 39

[IS = 1 1< o | PP 39
L O S = = 1 11 | 40
(000110 IS = = 1= 40
IF Statement: TYPE L oot e 41
IF StaemMENt: TY P 2 oo 41
FOR/NEXT SEALEMENTvtieiiiiiieeeeeiie et e e e e e e e e e et e e et e e e et e e e e ennn s 41
WHILE..DO SEAEMENT ...ceeiviieeiiii et e et e e e et e eeeai e eeenes 42
REPEAT..UNTIL SEAEMENE ...eevuneiiiiiieeiiieee et et e et e et e et e e 43
LOOP and ENDLOOP/EXITIF and ENDEXIT Statementscovevvvvvveveeiinnenens 43
IO N OIS = 1 1< o PP 44
GOSUB/RETURN SEBLEIMENES ... eeeeeiiieeeiiiieeeeeiiseeeetiseeesiiseeessiseeessnnnesesnnnns 44
ON GOTO/GOSUB SEAEMENEvviieeeiriieeeiiiieee et ee e et eeeeiis e e e eetineeeeeaineeaeees 45
ON ERROR GOTO SEAEMENE ...eevvueeeiiiieeeiiiieeeeiieeeeeiiaeeeeiiaeeeeniseeeenenaeeeens 46
EXECULION SEAIEMENES .. evtiiii e e e e e e e e e e e e e st s e et e e e eeeen 46
RS 1< 01 1= 0| PSSP 46
S - 1= 01 | PP 48
CHAIN SEBEMENE ...t e e e e 48
S I S - 1= 01 | PP 49
o N DS = =01 o | S 50
S O S - 1= 11 0| PP 50
2 S - 1= 141 o | PP 50
ERROR SEALEMENT ...eevtieiiiiiieee i e e et e e e et e e e et e e e enanaeeeenes 50
Y O S S 1 01 1< 0| 51
CHD and CHX SEaLEMENES ...vuuiiiiieiiii e e e e e e e e e e e e e anes 51
DEG and RAD StAEMENESuivieiii e e e e e e e e e s e e e et e e st e e eaeeeaaees 51
BASE 0 and BASE 1 SEEEMENESoeviiiieiiiii et ee et e e et e e et eeeeain e eeees 51
TRON and TROFF SEBEEMENESevviviieeiiiiiee et e et e et e e e e eeain e e eenenns 52
COMMENT SEALEIMENTSeeieieei ittt e e e e e enes 52
(D= e i A S = =101) 52
DS = = 11 o PP 53
PARAM SEBEEIMENE ...t e e e e e et e e e eaan e e eeeenns 54
L 5 SRS = =107 0| P 54

INput and OULPUL OPEFBEIONSuuuiirieii et e e e e e e e e e e e e e et e e e e e e e e e e e eeteeeaneeeanaes 57
Files and Unified INPUY/OULPULoovviiiii e e e e 57
T @ T 1 PSP 57

INPUT SEBEEMENT ...ttt e et e e e et e eeeara e eeees 58
L R N IS 1 011 0| SO 59
OPEN SEABEEMENT ...eiietiieeeeii e e e e e ettt e e et e e e et e e e eatn e eeeaes 60
O R N I S - =01 | PSPPI 60
CLOSE SEAEMENE ...iiiiiiiieeeeii ettt e e e e e e e e ere e 61
DELETE SAEMENE ...iiieiieeeee ettt e et e e et 61
SEEK SEAEMENE ... e 62
YR I SIS - 1= 01 0| PSR 62
READ SEAIEMENE ...ttt e et e ettt e e et e e e eat s e e e eaen e eaee 63
GET/PUT SEBEIMENE ...vuieeiiiieeeeeii e et e et e et e et s e e et s e e e et e e e eeaenneeeees 63
Internal Data StatEMENESuiii e e e e 65
DATA/READ/RESTORE SEAEMENEScivviiieiiiiiieeteiie e et e et e e e e 65
Formatted Output: The Print USiNg StateMENteevviiiiiiieiieeiie e eeei e 66
LSz 0 0 67
EXponential FOrMEEc.uuiiiiiiii e 67
INEEOEN FOIMIBL ... euieeii e e e e e et e e e e aen 68
HexadeCimal FOMMaLccouniiii e 68
S T 0] 0 PN 69

(2300 7= T 0 1 = 69

BASIC09 Reference Manual

Control SPECITICAHIONSiiiiicii e e e e 69

REPEAE GIOUDS ..vuvniie ittt e e e e 70

Program OPtimMiZaEiONc.uieiiiiiii e e e e e e et e e et e e e 71
General Execution Performance of BASICO9uviiiiiiiiieeiiiie e 71
Optimum Use of NUMENC Data TYPES .vvuneiinieiiieeiieeee e e ee e e e e e e et e e e e eeaen 71
(o701 1o @ 18 1o 72
Optimum Use of Arrays and Data SITUCIUIEScvvueiiiiieii e e e e e e e eias 72

The PACK COMMEBNGuuiiiiiiiieie et e e et e e et e e e e e eeeaa e 72
Eliminating Constant Expressions and SUD-EXPreSSioNSocvvvieiiiieeiineeiiiieeiieeenneens 73

Fast Input and OULPUL FUNCLIONSuuuiiiiiciii e e e e e e 73
Professional Programming TeChNIQUESccuiiiiiiiiii e 73

AL SAMPIE PrOgramS ... ccve i et e e e e e e e e e e 75
B. QUICK REFEIENCE ... it e e e e e e e e e e e e e ees 89
C. BASICO9 EITOr COUES ...eevvinetiitie ettt ettt e et a e et e e e b e e e et eeeebn e 93
D 2 0 0] SR TSPP 95
E. The BASICQ9 Graphics Interface Modulecouiiiiiiiiii e 97

Vi

Introduction
Comments on BASICO09

BASICO09 is an enhanced structured Basic language programming system specially created for the
6809 Advanced Microprocessor. |n additionto the standard BA SI C language statementsand functions,
BASICO09 includes many of the useful elements of the PASCAL programming language so that
programs can be modular, well-structured, and use sophisticated data structures. It also permits
full access to amost al of the OS-9 Operating System commands and functions so it can be used
as a systems programming language. These features make BASICQ9 an ideal language for many
applications: scientific, business, industrial control, education, and more.

BASIC09 isunusual in that it is an Interactive Compiler that has the best of both kinds of language
system: it gives the fast execution speed typical of compiler languages plus the ease of use and
memory space efficiency typical of interpreter languages. BASICO09 is a complete programming
system that includes a powerful text editor, multi-pass compiler, run-time interpreter, high-level
interactive debugger, and a system executive. Each of these components was carefully integrated to
givetheuser afriendly, highly interactive programming resource. that providesall thetoolsand helpful
“extra’ facilities needed for fast, accurate creation and testing of structured programs.
BASICO09 Features
* Structured, recursive BASIC with Pascal-type enhancements:

« alows multiple, independent, named procedures

 procedures called by name with parameters

« multi-character, upper or lower caseidentifiers

« variables and line numbers local to procedures

« line numbers optional

» automatic linkage to ROM or RAM *“library” procedures

« PACK command compacts program and provides security

« PRINT USING with FORTRAN-like format specifications
» Extended data structures:

» Five Basic datatypes: BY TE, INTEGER, REAL, BOOLEAN, and STRING

¢ Oneg, two, or three dimensional arrays

e User-defined complex structures and data types
» Extended Control Structures (with Unique Closure Elements):

e |F..THEN...[ELSE...] ENDIF

+ FOR..TO..[STEP]..NEXT

REPEAT...UNTIL...

L]

WHILE...DO...ENDWHILE

LOOP...ENDLOOP

The History of BASIC09

o EXITIF..THEN..ENDEXIT
» Graphics Interface Module for Access to Dragon Computer Colour Graphics Functions
» Powerful interactive debugging and editing features:

* Integral, full-featured text editor

e Syntax error check upon line entry and procedure compile

» Trace mode reproduces original source statements

* Renumber command for line numbered procedures
* High-speed, high-accuracy math:

» 9 decimal-digit 40 bit binary floating point

» Full set of transcendentals (SIN, ASN, ACS, LOG, etc.)

The History of BASICO09

BASIC09 was conceived in 1978 as a high-performance programming language to demonstrate
the capabilities of the 6809 microprocessor to efficiently run high-level languages. BASIC09 was
developed at the same time as the 6809 under the auspices of the architects of the 6809. The
project covered almost two years, and incorporated the results of research in such areas as interactive
compilation, fast floating point arithmetic algorithms, storage management, high-level symbolic
debugging, and structured language design. These innovations give BASIC09 its speed, power, and
unique flavor.

BASIC09 was commissioned by Motorola, Inc., Austin, Texas, and developed by Microware Systems
Corporation, Des Moines, lowa. Principal designers of BASIC09 were Larry Crane, Robert Doggett,
Ken Kaplan, and Terry Ritter. Thefirst release wasin February, 1980.

Excellent feedback, thoughtful suggestions, and carefully documented bug reports from BASIC09
users al over the world have been invaluable to the designersin their efforts to achieve the degree of
sophistication and reliability BASICO09 has today.

Introduction to BASICO09
Programming

This section is intended for persons who have not previously written computer programs. If you are
familiar with programming in general or BASIC programming specifically, this section can give you
a“feel” for the BASICO9 interactive environment.

What is a Program?

A computer works something like a pocket calculator. With a calculator you push a button, some
calculation occurs, and the result is displayed. On some calculators you can write a program which is
just alist of the buttons you want pushed, in the order you want them pushed. Thisis very similar to
a computer program, but most computer languages use command names instead of buttons.

To get results from a computer, you must first put into the computer the list of commands you want
executed in the order you want them executed. Each command will mean “do this thing” or “do that
thing”, but the computer only has certain commands which it will understand. A computer can do
things like “add” or “save the result into memory”. Typing “get me a taco” to a computer won't get
it; similarly, on a calculator you can't push buttons which aren't there. After you have stored alist of
commandsinto the computer, you can tell it to perform those operations. Thisislike actually pushing
the buttons on a hand calculator. Then, if you remembered to have the computer display your results,
you get to seethem. Generally, acomputer does not automatically display resultslikeahand calculator.
More calculations occur in a computer then in a calculator, and displaying all these results would
simply be overwhelming.

You enter a program into a computer by using the computer itself as a “text editor”, to store the
commands you type in. Some editors allow you to enter any text you want. Other editors will only
store valid computer commands. Even if the computer does store all the text you typein, it can only
execute those commands it knows. If during program execution, BASICO09 finds a word which does
not correspond to a command it will probably stop and print out an “error message”. Other editors
check each command asyou enter it (usually after the carriage-return ending each line) and print error
messages immediately for invalid commands. After typing inyour list of commands, there are waysto
display that list, to modify the commands you have typed in, and to insert others. But simply entering
acomputer program does not get results any more than thinking which buttons to push will get results
on acalculator. Y ou store your program by typing it into acomputer, but no results are available until
after you start the program running.

Even though programming is conceptually simple, it is easy to misspell commands which BASIC09
will not interpret correctly. Unlike humans, BASIC09 does not infer anything: Every command must
be perfectly spelled and punctuated or it iswrong. Even after spelling errors are eliminated, it islikely
that the sequence of commands you have entered will not do the job you wanted it to do. The meaning
of the program to BASICQ9 is often quite different than was intended by the programmer, but good
intentions just don't push theright buttons. After you get the program to run without obvious error, you
must test the program with sample input and see that it produces results which are known correct. If
the results are incorrect, the program must be modified and tested until it does produce correct results.
Thisisknown astesting and debugging. Computer malfunctionsarerare, and if the computer worksto
store the program, it is probably working perfectly. If the program does not work, you need to puzzle
out how the computer is doing something which you didn't realize that you told it to do. Programming
can be frustrating, but if you enter the right commands, the computer will do the right things for you.

A Simple BASICO09 Program

Probably the easiest way to explain programming is by example. This simple program sometimes
keeps kids happy for hours. First, the program asks the user for his name. Then the computer types

A Simple BASIC09 Program

out “Hi”, then the name, then “see you later”. This may not seem like much, but it is great fun to type
in things which are not your name, and see if they will be printed out. They will, of course.

When you turn on the BASIC09 computer it will print some heading information. If the prompt is
“0S9: ", enter the “basic09” (and a carriage-return) to get to the prompt “B:”. When you have the
prompt “B:”, it means that the system is in the BASICQ9 “command mode”’. While in the command
mode, you can do severa things, like: list, kill, or create programs (called “ procedures’ in BASIC09).
BASICO09 lets you keep severa different programs in memory at the same time. Each procedure is
identified by aname you give it when you create the procedure.

To create a new procedure you command the system to enter the “edit mode” by typing asimple “¢€”
(in upper or lower case) and a carriage-return (the ENTER] or [RETURN]| key). The Editor lets you enter
or change programs and actually checks for many common errors as you type in your program. This
automatic checking feature is one of the nicest things about BASIC09. Because it's always “looking
over your shoulder” to catch mistakes, it savesalot of debugging time! If you're not 100% sure about
how something works - you can go ahead and try it instead of digging through this manual. If you
guess wrong BASICO9 will usually show you where and why.

Because you did not specify aparticular procedure name, BASIC09 will automatically select the name
“PROGRAM” for you, and will respond by printing out “PROCEDURE PROGRAM”; this means
that you will be editing a procedure which is named PROGRAM. Later you will see that you can
enter many different procedures and give them different names (just type the name you want to use
for the program after the“e"). A procedure name may be any combination of alphanumeric characters
beginning with aletter.

The computer output so far isafollows:

0S9: basi c09

BASI C09

READY

B: e

PROCEDURE PROGRAM
*

E:

The asterisk (*) indicates the “ current edit line” in the procedure being edited. In this case the current
lineis empty since you have not yet entered anything. The asterisk is handy, since you will be moving
back and forth between different lines to edit them. Later you will be “opening” existing procedures
for modification, and thefirst linewill be displayed automatically, hel ping identify that you are editing
the correct program.

When BASICO09 responds with the edit prompt “E:”, it isin the edit mode. Now you can enter “edit
commands’ which help us enter the computer program. While in edit mode, BAS C09 always takes
thefirst character of every line as an edit command. Some of the basic edit commands are:

pr ogr am st at enent insert line

? go to next line down (just al so does the sane)
- nove back to previous line

L RETURN list current line

d delete current |ine

You must type an edit command at the start of each line. If you forget to type an edit command,
BASICO09 will respond with “WHAT?’. The most-important edit command is the (invisible) space
character; it means “save the following line of text”. The “space’” command is the way most text is
entered into the system. If aline is to be entered, you must type a space before the rest of the line.
Another useful edit command is“L*” (or “I*”, since the editor accepts either upper or lower case)
which will display the whole procedure. This allows you to watch the procedure develop as lines are
entered.

A Simple BASIC09 Program

Y ou use the “space” command to enter the following line:

E: PRINT "type your nane"

*

When BASIC09 executes procedure PROGRAM, this line will tell it to print on the screen all of the
characters between the quotes.

As mentioned before, BASIC09 checks for errors at the end of each line and again when the edit is
finished. These errors are, in general, anything BASIC09 cannot identify or things that don't conform
to the rules of the language. An error could be a bad character, mismatched parenthesis, or one of
many other things. BASICO09 will print out an “error code” to identify the error and print an up arrow
character under the place in the line where it detected the error. The error codes are listed at the end
of this manual. If the error was detected at the end of the edit session, the I-code location of the error
will also be printed. This cryptic information is all BASIC09 knows about the problem, hopefully, it
will help you to find and fix the error.

In the same way that you entered the first line, enter the following lines. Remember that the first
character entered must be a space to get BASICO09 to save the rest of the line. Example:

E: I NPUT nane$

*

E: PRINT "H ";name$;", see you later."
*

E

*

END

The second line (“input name$”), when executed, commands BASIC09 to wait for a line of text to
come in from the keyboard (this will happen after the user reads the message printed out in the first
line). BASICO9 will accumulate text from the keyboard character-by-character until a carriage-return
ends the line. This text is placed in memory corresponding to the variable “name$”. The dollar-sign
(%) onthe end of the variable tells BASIC09 that you want to store a sequence of characters as opposed
to anumber.

Thethird line of procedure PROGRAM (print "H "; name$;", see you later."), starts
out like the first line. The command “print” causes BASICO9 to print out the various values which
come after it. When this line is executed, the characters H, i, and “space” are printed out since the
are enclosed in double-quotes. Next, without additional spaces, BASICO09 prints out the line which
was typed in by the user and saved in the memory corresponding to “name$’ and prints out “ see you
later”. When a PRINT statement contains multiple values, it will print them out one after the other.
If the separator is a comma, BASICO09 will move to the next 16-column “tab stop” before printing
the next value. However, if the separator between print values is a semicolon, absolutely no space
will separate the values. The last line of the procedure (“END”) tells BASICO9 to stop executing the
program and return to the command mode (B:). Y ou have not yet EXECUTED the procedure, you are
just EDITING. If you typein I* the whole program will be listed, as follows:

E:l*
PROCEDURE PROGRAM
0000 PRI NT "type your nanme"
0012 | NPUT nane$
0017 PRINT "H ";nanme$;", see you later."
0035 END
*
E:

Notice that the editor has added some information which you did not typein. Y ou can use thislisting
to show exactly what to typein to run this program, but the editor only wantsthe relevant information.

Basic Programming Techniques:
Loops and Arithmetic

The numbersto the left are “1-code addresses’. These are the actual memory locations relative to the
start of the procedure where each line begins. These numbers may look strange because they are in
hexadecimal (base 16). These values are important, since the compiler may find errors at some I-code
location and will try to convey that information it hasto the programmer. I-code addresses are supplied
automatically by BASICO09.

The space between the “1-code addresses” and the beginning of the program line is reserved for “line
numbers’. Line numbers are required in many versions of BASIC (although not in BASIC09). Notice
that although the program was typed in lower case some words are printed in upper case. BASIC09
identifies valid command “keywords’ and converts them to upper case automatically.

Now let'srun it. First type “q” to quit the editor. We are now back in “command mode” (B:). Now
type “run”. BASICQ9 remembers the procedure edited (PROGRAM) and starts to execute it.

E: g

READY

B:run

type your nane

? tex

H tex, see you later.
READ

B:

The question mark (?) isthe normal input prompt to tell the user that the program iswaiting for input.

This program is extremely simple, but younger kids can get great fun from it. Its action is especially
amusing to young people who are learning acomputer language for the first time because amachineis
“responding” to them, and because the machineistoo easily “fooled” if you do not typein areal name.

Basic Programming Techniques: Loops and
Arithmetic

Another simple program that most of uscan identify withisaprogram to print out multiplication tables.

PROCEDURE mul t abl e

FOR i=1 TO 9
FOR j=1 TO 9
PRINT i*j; TAB(5*j);
NEXT |
NEXT i

First, open the editor by typing “e multable”, as follows:

B: e multable
PROCEDURE mul t abl e

*

E:

Next, typein the program line-by-line starting with “FOR i=1 TO 9” (lower-case is perfectly fine). If
you loose your way, type“L*” to see where you are. Thiswill display the entire procedure and put an
asterisk at the left of the current line. If you make a mistake, use “+" or “-” to mode to that line, use
“d" to delete the line, and use the space command to enter the line over. Make sure that there are no
errors and then type “q”. When you have the program running, try adding a statement before “FOR
i=1TO9" asfollows. “DIM i,j:INTEGER".

The FORi=1TO 9 and NEXT i constitute the start and end of a control structure or “loop”. A control
structure is used to cause repeated or conditional execution of the statement(s) it surrounds. A control

Listing Procedure Names

structure usually has one entry at the top and one exit at the bottom. In this way, the entire structure
take on the properties of a single statement. The beginning statement of the FOR...NEXT structure
(FOR...) provides a “loop initialization”, places the value 1 in the storage called “i”, and sets up the
operation of the following NEXT (every FOR must have aNEXT). When “NEXT i” is executed, the
valuein“i” isincreased by 1 (which is the default STEP size) and compared to the value 9 (which is
the ending value for thisloop). If theresulting “i” islessthan or equal to 9, the statement(s) following
that FOR... is (are) executed.

Loops can be “nested” to execute the enclosed statements even more times. For example, the PRINT
statement in “multable” is executed 81 times; once for each of 9 values of “j” and this number (9
times) for each of 9 values of “i”. The ability to tremendoudly increase the number of times some
code is executed is at the heart of both computer programming and computer errors. It means that a
vary small portion of a program can often be made to do the vast mgjority of the work. But a few
remaining special cases may require individual handling and may consume more programming and
code than that which “usually” works. Unfortunately, “usually” isnot sufficient. A specia case which
occurs once in a thousand times may occur once a second, and if the error stops the program, further
processing of normal values also stops. Experience has indicated that the programmer should know
what is happening in the first and second pass, and the next-to-the-last and last pass through each loop
in the program.

Listing Procedure Names

The “DIR” command causes BASICO09 to display the names and sizes of al proceduresin memory.
This command is used so frequently that there is a quick shorthand for DIR: asimple when
in command mode does the same thing. Y ou will see atable of all procedure names and two numbers
next to each name. Thefirst column, “proc size”, isthe size of the corresponding procedure. The “data
size” column shows the amount of memory that the procedure requires for its variables. On the last
line this command shows the amount of free bytes of workspace memory remaining. You can use
this information to estimate how much memory your program needs to run. You must have at least
as much free memory as the data size of the procedure(s) to be run. If a data size number is followed
by a question mark, you need more memory.

Requesting More Memory

BASIC09 automatically get 4K of workspace memory from OS-9 when it starts up. There is almost
always more than this available, but BASICO09 does not grab it all so other tasks running on your
computer can have memory too. If you are not multitasking and need more memory, the MEM
command can get it if available. Just type MEM and the amount of memory you want. Depending on
your computer and how it is configured, you can usually get at least 24K in OS-9 Level One Systems
or 40K in OS-9 Level Two systems. For example:

VEM 20000

requests 20.000 (20K) bytes of memory. BASIC09 will always round the amount you request up to the
next highest multiple of 256 bytes. If MEM responds with “WHAT?’, this means that much memory
isnot available. Thereisanother convenient way to do the same thing when you first call up BASIC09
from OS-9. OS-9 has a “#’ memory size option on command lines that let you specify how much
memory to give the program. To call BASIC09 with 16K of memory to start with, you can type:

0S9: basi c #16k

Storing and Recalling Programs

Nobody wantsto retype awhole program every timeit isto berun. Two commands, SAVE and LOAD,
are used to store programs and recall previously “SAVEd” programs to or from OS-9 disk files. The

How to Print Program Listings

simpleway to use SAVE isby itself. It will store the procedure last edited or run on adisk file having
the same name. For example:

B: save

If our procedure name was the default name “PROGRAM”, BASIC09 will create a file called
“PROGRAM” to hold it. OS-9 won't let you have two files of the same name because unique names
are necessary to identify the specific file you want. Therefore if afile caled “PROGRAM” aready
exists, BASIC09 will ask you:

Overwite?

If you respond “Y” for YES, it will replace the file previously stored on that file with the program to
be saved. Thisis OK if what you want to save is anever version of the same program. But if not you
will permanently erase another program you may have wanted to keep. If thisis the case answer “N”
for NO. Fortunately, there is a simple way to store the procedure on afile using a different name: just
type SAVE, a“>", and adifferent file name of your choice. Thefile can consist of any combination of
up to thirty-one letters, numbers, periods, or underscores (“_"). The only restriction is that the name
must start with aletter A-Z or a-z. For example:

save >newpr ogr anb

will save the program on a file called “newprogram5”. There are several useful variations of the
SAVE command that let you save various combinations of programs on the samefile. Seethe SAVE
command description for moreinformation. Y ou should also read Chapter 2 of the OS-9 User'sManual
to learn about the OS-9 commands that deal with disk files.

If you exit from BASICQ9, it will not automatically save your programs. Y ou must make sure to save
them before you quit, or they will be lost unless the were saved at some time before!

The LOAD command, asit's name implies, readsin a previously save program from afile. Y ou must
give the name of the file with the command. For example:

| oad program

If you just started BASIC09 and have not created any procedures, the command isvery straightforward.
Asthe procedure(s) stored in the file are loaded, BASIC09 displays their name(s) as they are brought
in. Once the program is loaded, you can edit and/or run it. But if you have a procedure in BASIC09
that has the same name as a procedure stored in the file, BASIC09 will replace it with the new version
loaded from thefile. If thiskind of conflict exists you could loose your old program, so be sureto save
or RENAME it before loading a new one (remember that BASICO9 can keep several proceduresin
memory at the same time as long as they have different names). If you want to permanently erase all
other procedures before loading new ones, you can type:

B: kill*

ThistellsBASIC09to “kill” all proceduresin memory and has the same effect as completely resetting
BASICO9.

How to Print Program Listings

If your computer isequipped with aprinter, you will want to make hard-copy listings of your programs.
Thisiseasy to do - just type:

B: LIST* /p

BASIC09's Four Modes:

Thistells BASIC09 to LIST all procedures in memory to the output device “/p” which is the printer
device name in most OS-9 systems. Like the SAVE command, LIST has several useful variations. If
you want to list just one procedure (if there are more than on in memory) you can type:

B: LI ST procedurenanme >/P

If you want, you can put two or more procedure names (separated by spaces) before the semicolon
and those specific procedures will be listed.

Notice that if you omit the “/p” or “>/p” from the commands above, the programs will be listed on
your display instead of the printer. This is the same as the “L*” command in Edit Mode. Y ou will
also notice that the listing will be automatically “ pretty-printed”, e.g. program levels within loops are
indented for easy reading.

BASIC09's Four Modes:

At any given time, BASIC09 isin one of four modes:

SYSTEM MODE: Used for executing system commands.
EDIT MODE: Used for creating/editing procedures.
EXECUTION MODE: Used for running procedures.
DEBUG MODE: Used for testing procedures for errors.

So far, you have been exposed to System Mode (SAVE, LOAD, etc.), Edit Mode (the editor), and
Execution Mode (RUN). A section of this manual is devoted to each mode. The chart below shows
how various commandsin each mode will cause a change to another mode.

Figure 1. BASIC09 Mode Change Possibilities

os-9 SYSTEM MODE EDI T MODE

| | | | | + |

| | | $ | | - |

| | <----- +--<eof > | | <cr> |

| | <----- +- - BYE | | <line#> |

| | | CHD | | <space> |

| | | CHX | | ¢ |

| | | DR | | d |

| | | EDIT----4------- > | | |

| | | KILL | <e------ +-q |

| | | st | | T

| BASI C09- +- - - - - > | LOAD | | s | | TRON |

| | | MEM | e | TROFF |

| | | PACK | e + END or Q |

| | | RENAME | | DEG RAD |

| | | RUN----e-oo - R | STATE |

| | | SAVE | <o-ee--- +- END | | $ |

| | | | <o------ +-<CTRL Q> | | BREAK |

| I <------- +- STOP | <----- +- CONT |

| BASI C09 | | PAUSE----+----- > | DIR |

| AUTORUN- +- - - == - - s mmm e e e oo > | ERROR----+----- > | LET |

| | | <CTRL C>-+----- > | LIST |

| | Semmmmm e +- BYE | | PRINT |

| | | PROGRAM | <----- +- STEP |
EXECUTI ON MODE DEBUG MODE

More about the Workspace...

More about the Workspace...

The workspace concept is important because BASIC09 and OS-9 are both highly modular systems,
and the workspace isaway to logically group a set of procedures (i.e. modules) which are applicable
to a particular line of study or development. Modular software development lets the programmer
divide alarge and complex project into smaller, more manageable, and individually testable sections.
Modularity also lets programmers accumulate and use libraries of commonly used routines.

As the software is written and debugged, BASIC09 makes it easy to deal with the procedures that
comprisean overall project, either individually or asagroup. For example, you can save all procedures
in the workspace to asingle mass storage file or load afile containing multiple procedures. Usually all
procedures associated with a project exists inside the workspace. However, you can also call library
procedureswhich are*outside” theworkspacein OS-9 memory moduleformat. Thelibrary procedures
can be written in BASICQ09 or machine language, can bein RAM or ROM memory, and can even be
shared by several users.

BASICO09 aways reserves approximately 1.2K bytes of the workspace for internal use. All remaining
spaceisused for storage of procedures and for procedure variabl e storage during execution. BASIC09
will not run aprocedureif thereisnot enough spacefor variables. If you run out of workspace area, you
can usethe MEM command to enlarge the workspace or you can kill proceduresin the workspace that
are not needed. The “MEM” command can be used at any time to change the size of the workspace.
The size of the workspace can be increased (subject to availability of free memory) or decreased (but
not below the minimal amount needed to store the present workspace).

Where to go From Here?

A good way to learn BASIC09isto useit! Try typing in and running some of the example programsin
the back of the book. Look up and study the function of each program statement. Read the chapters on
the EDIT and DEBUG modes and experiment with more advanced commands. Also, BASIC09 and
the OS-9 Operating System are so intimately connected, a basic understanding of OS-9 isimportant.
See Chapter 2 of the OS-9 User's Manual.

10

System Mode

System modeincludes commandsto save, load, examine procedures, commandsto interact with OS-9;
and other commands to control the workspace environment. A complete list of system commandsis
given below.

Table 1. System Mode Commands

$ CHX EDIT LOAD RENAME
BYE DIR KILL MEM RUN
CHD E LIST PACK SAVE

The system commands are processed by the BASIC09 “command interpreter” which alwaysidentifies
itself with the “B:” prompt. It is entered automatically when BASICQ9 is started up and whenever
you exit any other mode. Commands can be entered in either upper or lower-case letters. Commands
such as DIR, MEM, “$", and BYE don't operate on specific procedures, but may have optional or
required parameters. Other commands (such as SAVE, LOAD, PACK, KILL, and LIST) can operate
on a specific procedure or on ALL procedures within the workspace. If the command is used with a
specific procedure name, the command is applied to only that procedure. For example:

[ist pete

will display the procedure named “pete’. The asterisk is a special name that means “all procedures
in the workspace”. Therefore, if the command is given followed by an asterisk it is applied to al
procedures. For example:

[ist*
will display all of the procedures in the workspace.

If the command is given without any name at all, the “current” working procedureis used. Thismeans
the name of the procedure last given in another command. The DIR command prints an asterisk before
its name so it can be found at any time. If you have not yet given a name in any command, the name
“PROGRAM?” isautomatically used. Some commandsthat require afile nameaswell as(one or more)
procedure names require that a“>" precede the file name so it is not mistaken for a procedure name.
If you omit the file name, the name of the (first) procedure is used instead. In this manual, the phrase
file name means an OS-9 “pathlist” which can describe either afile or device.

Here are some examples:
SAVE tombill >nyfile
SAVE* big_file

or

SAVE tic tac toe

which is exactly equivalent to

SAVE tic,tac,toe >tic

Another class of commands use only one procedure name, or the current working name if anameis
omitted. These commands change the mode of BASICO9 by exiting the command mode and entering
another mode. These commands are:

11

Syntax Notation Used in
System Command Descriptions

RUN which enters Execution Mode to run a procedure
EDIT which enters Edit Mode to create or change a procedure

The one other mode, Debug Mode, cannot be entered directly from the system mode — more on this
later.

Syntax Notation Used in System Command
Descriptions

Individual descriptions of the available commandsin each modefollow. In order to precisely describe
their formats, the syntax notation shown below is used.

[1 things in brackets are optional.

{} thingsin braces can be optionally repeated.
pr ocname means a procedure name

pat hl i st An OS-9file name

number A decimal or hex number

System Mode Commands

$ [text] (“Shel | " Conmand)

This command calls the OS-9 Shell command interpreter to process an OS-9 command or to run
another program. Running the OS-9 command does not cause BASICO9 or its workspace to be
disturbed.

If the“$” isfollowed by text, the Shell is called to process the text as a single OS-9 command line.
After the command is executed, BASIC09 isimmediately re-entered.

If no text is specified, BASICO9 is suspended, and the OS-9 Shell is called to process multiple
command lines individually entered from the keyboard. Control is returned to BASIC09 when an
end-of-file character (usually ESCAPE) is entered. The contents of the BASIC09 workspace is not
affected. Thisisaconvenient way to temporarily leave BASIC09 to manipulate files or perform other
housekeeping tasks.

Thiscommand isthe* gateway” to OS-9 frominside BASICO09. It allows accessto any OS-9 command
or to other programs. It also permits creation of concurrent processes and other real-time functions.

Examples:

B: $copy filel file2 Calls the OS-9 copy conmmand

B: $asm sourcefil e& Cal Il s the assenbl er as a background task
B: $basi c09 fourier(20)& Starts anot her concurrent BASI C09 program

BYE (or ESCAPE character)
Exits BASIC09 and returns to OS-9 or the program that called BASIC09. Any procedures in the

workspace are lost if not previously saved. The escape key (technically speaking, an end-of-file
character condition on BASICO09's standard input path) does the same thing.

CHD pathlist or CHX pathli st

12

System Mode Commands

Changes the current OS-9 user Data or Execution Directory to the specified pathlist which must be
a directory file. BASICO09 uses the Data Directory to LOAD or SAVE procedures. The Execution
Directory isused to PACK or auto-load packed modules.

Example:

CHD /d1/j oel/ ganes

DIR [pathlist]

Displays the name, size, and variable storage requirement of each procedure presently in the
workspace. The current working procedure has an asterisk before its name. All packed procedures
have a dash before their name (see PACK). The available free memory within the workspace is also
given. If apathlist is specified, output is directed to that file or device.

A question mark next to a data storage size means the workspace does not have enough free memory
to run that procedure.

Note: This command should not be confused with the OS-9 “DIR” command. They have completely
different functions.

EDI T [procnane]
E [procnane]

Exits command mode and enters the text editor/compiler mode. If the specified procedure does not
exist, anew oneis created. See the Chapter 4 for a complete description of how edit mode works.

Examples:

E newpr og
EDI T printreport

KILL [prochane {, procnane}]
KI LL*

Erases the procedure(s) specified. KILL* clears the entire workspace. The process may take some
timeif there are many procedures in the workspace.

Examples:

kill fornmulas
kill progl, prog2, prog7

LI ST [procnane {, procnane}] [> pathlist]
LI ST* [pathlist]

Prints aformatted “ pretty printed” listing of one or more procedures. The listing includes the relative
I-code storage addresses in hexadecimal format in the first column. The second column is reserved
for program line numbers (if line numbers are used).

If apathlist isgiven, thelisting is output to that file or device. This option is commonly used to print
hard-copy listings of programs. The LIST, SAVE and PACK commands all have identical syntax,
except that LIST prints on the OS-9 standard error path (#2) if no pathlist is given. The files produced
are formatted differently, but the function is similar.

13

System Mode Commands

I mportant

If an“*" isused with LIST, SAVE or PACK, the file name immediately follows WITHOUT
agreater-than sign “>" beforeit!
Examples:

list* /p
list prog2, prog3 >/p
list progbs >tenp

LOAD pat hl i st

Loadsall procedures from the specified fileinto the workspace. As procedures are loaded, their names
are displayed. If any of the procedures being |oaded have the same name as a procedure aready in the
workspace, the existing procedures are erased and replaced with the procedure being loaded.

If the workspace fills up before the last procedure in the file is loaded, an error (#32) is given. In this
case, not all procedures may have been loaded, and the one being |oaded when the workspace became
full may not be completely loaded. Y ou should KILL the last procedure, use the MEM command to
get more memory or KILL unnecessary procedure(s) to free up space, and then LOAD the file again.

Example:
| oad quadratics

VEM
VEM [nunber]

MEM used without a number displays the present total workspace sizein (decimal) bytes. If anumber
is given, BASIC09 asks OS-9 to expand or contract the workspace to that size. A hex value can be
used if preceded by a dollar sign. If MEM responds with What?, you either asked for more memory
than is available, tried to give back too much memory (there has to be enough to store all procedures
in the workspace), or gave an invalid number.

Example:
MEM 18000

PACK [procnane {, procnane}] [> pathlist]
PACK* [pathlist]

This command causes an extra compiler pass on the procedure(s) specified, which removes names,
line numbers, non-executable statements, etc. The result is a smaller, faster procedure(s) that cannot
be edited or debugged but can be executed by BASIC09 or by the BASIC09 run-time-only program
called “RunB”. If a pathlist is not given, the name of the first procedure in the list will be used as a
default pathname. The procedureiswritten to thefile/device specified in OS-9 memory modul e format
suitable for loading in ROM or RAM outside the workspace. The resulting file cannot be loaded into
the workspace later on, so you should always perform aregular SAVE before PACKing a procedure!

BASIC09 will automatically |oad the packed procedurewhen you try torunit later. Hereisan example
sequence that demonstrates packing a procedure;

pack sort packs procedure sort and creates afile
kill sort kills procedure inside the workspace

14

System Mode Commands

run sort run (sort is loaded outside of the workspace)
kill sort done; delete “ sort” from outside memory

Thelast step (kill) does not have to be done immediately if you will use the procedure again later, but
you should kill it when you are done so its memory can be used for other purposes.

Examples:

pack procl, proc2 >packed. prograns

pack* packedfile

RENAME pr ocnhane, new prochane

Changes the name of a procedure. Can be used to allow two copies of the same procedure in the
workspace under different names.

Example:

rename thisproc thatproc

RUN [procname [(expr , {expr}) 1]

Runsthe procedure specified. Technically speaking, BA SICO09 then |eaves Command mode and enters
Execution mode.

A parameter list can be used to pass expected parameters to the procedure in the same way a RUN
statement inside a procedure calls another procedure except for the restriction that all parameters
must be constants or expressions without variables. See the PARAM statement description. Assembly
language procedures cannot be run from command mode.

The procedure caled can be normal or “packed”. If the procedure is not found inside BASICO09's
workspace, BASICO9will call 0S-9to attempt to LINK to an external (outsidetheworkspace) module.
If thisfails, BASICO09 attempts to LOAD the procedure from afile of the same name.

Examples:

run getdata

run invert("the string to be inverted")
run power (12, 354. 06)

run power ($32, sin(pi/2))

SAVE [procnane {procnane} [> pathlist]]
SAVE* [pathlist]

Writesthe procedure(s) (or all procedures) to an output fileor devicein sourceformat. SAVE issimilar
to the LIST command except the output is not formatted and |-code addresses are not included. If a
pathlist is not specified, it defaults to the name of the first procedure listed.

If afile of the same name already exists, SAVE will prompt with:

15

System Mode Commands

rewite?

You may answer “Y” for yes which causes the existing file to be rewritten with the new procedure(s);
or “N” to cancel the SAVE command.

Examples:

save proc2 proc3 proc4 >nonday. wor k
save* newprogram
save

save >testprogram

16

Edit

Mode

Edit Mode (also called “The Editor”) is used to enter or modify BASIC09 procedures. It is entered
from Command Maode by the EDIT (or E) command. As soon as Edit Modeisentered, prompts change
from “B:” to “E:” If you have used atext editor before, you will find the BASIC09 editor similar to
many others except for these two differences:

1. Theeditorisboth “string” and “line number” oriented. The use of line numbersis optional and text
can be corrected without re-typing the entire line.

2. The editor is interfaced to the BASIC09 compiler and “decompiler”. This lets BASIC09 do
continuous syntax error checking and permits programsto be stored in memory in amore compact,
compiled form.

Overview of Edit Commands

How

The Editor includesthefollowing commands. Each command isdescribed in detail later in thischapter.

Table 2. Edit M ode Commands

RETURN move edit pointer forward

+ move edit pointer forward

+* move edit pointer to end of text

- move edit pointer backward

-* move edit pointer to beginning of text
[SPACH't ext insert unnumbered line

i ne#text insert or replace numbered line

l'i ne# find numbered line

c change string

c* change all occurrences of string

d delete line

d* deleteal lines

I list line(s)

[* listal lines

q quit editing

r renumber line

r* renumber al lines

S search for string

s search for all occurrences of string

the Editor Works

In order to understand how the editor worksit is helpful to have a general idea of what goeson inside
BASICO09 while you are editing procedures. BASIC09 programs are always stored in memory in a
compiled form called “I-code” (short for “Intermediate Code”). I-code is a complex binary coding
system for programs that lies between your origina “source” program and the computer's native
“machinelanguage’. |-codeisrelatively compact, can be executed rapidly, and most importantly, can
be reconstructed almost exactly back to the original source program. The Editor is closely connected
to the“compiler” and “decompiler” systemswithin BASICO09 that translate source code to I-Code and
vice-versa. It isthisinnovative system that gives BASIC09 its most powerful and unusual abilities.

17

Line-Number Oriented Editing

Whenever you enter (or change) aprogram line and “return”, the compiler instantly translates this text
totheinternal 1-codeform. When BA SIC09 needsto display program linesback, it usesthe decompiler
to translate the I-code back to the original “source” format. These processes are completely automatic
and do not require any specia action on your part.

This technique has several advantages. First, it allows the text editor to report many (syntax) errors
immediately so you can correct them instantly. Secondly, the I-code representation of a program is
more compact (by about 30%) than its origina form, so you can have have larger programs in any
given amount of available memory.

When programs are listed by BASICO09, it is possible they will have a dightly different appearance
than theway they were originally typed in, but they will always befunctionally identical to theoriginal
form. This can happen if the origina program had extraneous spaces between keywords, unnecessary
parentheses in expressions, etc. BASIC09 keywords are always automatically capitalized.

When you have finished editing the procedure, use the “q” (for “quit”) command to exit edit mode
and return to the command mode. When you give the “q” command, the compiler performs another
“pass’ over the entire procedure again. At thistime syntax that extends over multiple linesis checked
and errors reported. Examples of these errors are: GOTO or GOSUB to a hon-existent line, missing
variable or array declarations, improperly constructed loops, etc. These errors are reported using an
error code and the hexadecimal |-code address of the error. For example:

01FC ERR #043
This message means that error number 43 was detected in the line that included |-code address 01FC

(hexadecimal). The LIST command gives the I-code addresses so you can locate lines with errors
reported during the compiler's second pass.

Line-Number Oriented Editing

As mentioned previoudly, the editor has the capability to work on programs with or without line
numbers (or both). Line numbers must be positive whole numbers in the range of 1 to 32767.

If you have experience with another version of the BASIC language, thisis the kind of editing you
probably used. However, well-structured programs seldom really need line numbers. If you don't have
to use line numbers, don't. Y our programs will be shorter, faster, and easier to read.

The line-number oriented commands are:

i ne#text insert or replace numbered line
i ne# find numbered line

d deleteline

r renumber line

r* renumber al lines

To enter or replace a numbered line, simply type in the line number and statement. Numbered lines
can be entered in any order, but will be automatically stored in ascending sequence. To move to a
numbered line, type the line number followed by a carriage return. The editor will move to that line
(or the line with the next higher number if the specified number is not found) and print it. The line
may be deleted using the “d” command.

The “r" renumber command will uniformly resequence al numbered lines and lines that refer to
numbered lines. Its formats are:

r [begline # [,incr]]
r*[beg line # [,incr]]

18

String-Oriented Editing

Thefirst format renumbers the program starting at the current line and forward. Lines are renumbered
usingbeg | i ne# astheinitial line number. i ncr isadded to the previous line number for the next

line's number. For example,

r 200,5

will give the first line number 200, the second 205, the third 210, etc. If beg | i ne# and/or i ncr
are not specified, the values 100 and 10, respectively, are assumed. The second form of the command
isidentical except it renumbersal linesin the procedure.

String-Oriented Editing

Most editor commands are string-oriented. This means that you can enter or change whole or partial
lines without using line numbers at all. You will find that string-oriented editing is generally faster
and more convenient.

Because line numbers are not used, there has to be another way to tell BASIC09 what place in the
program to work on. To do this, the editor maintains an “ edit pointer” that indicates which line isthe
present working location within the procedure, and commands start working at this point. The editor
shows you the location of the edit pointer by displaying an “*” at the left side of the program line
where the edit pointer is presently located.

Moving the Edit Pointer

The"+" and “-" are used to reposition the edit pointer:

- moves backward one line

- nunber moves backward n lines

-* moves to the beginning of the procedure
+ moves forward one line

+ nunber moves forward N lines

+* moves to the end of procedure

Thenumber indicateshow many linesto move. Backward meanstowardsthefirst line of the procedure.
If the number is omitted, acount of oneisused (thisistrue of most edit commands). A line consisting
of acarriage return only also moves the pointer forward one line, which makes it easy to step through
aprogram one line at atime. Therefore, the following commands al do the same thing:

+ FETUR
+1 FETURN

Inserting Lines

The Insert Line function consists of a*“ space” followed by a BASIC09 statement line. The statement
isinserted just ahead of the edit pointer position. (the space itself is not inserted).

Deleting Lines

The“d” command is used to delete one or more lines. Itsformat is:

d [nunber]
d*

19

Listing Lines

The first form deletes the nunber of lines starting at the current edit pointer location. The second
form deletes ALL linesin the procedure (caution!). The editor accepts “+*” and “-*” to mean to the
end, or to the beginning of the procedure respectively. If the number is negative, that many linesbefore
the current lineis deleted. If aline number is omitted, only the current line is deleted.

Listing Lines

The*l” command is used to display one or more lines. It also has the forms:

| [nunber]
I*

The first form will display the nunber of lines starting at the current edit pointer position. If the
number is negative, previous lines will be listed. The second form displays the entire procedure.
Neither change the edit pointer's position. The line that is the present position of the edit pointer is
displayed with aleading asterisk.

Search: Finding Strings

What's a string? A string is a sequence of one or more characters that can include letters, numbers, or
punctuation in any combination. Strings are very useful becausethey allow you to change or locate just
part of a statement without having to type the wholething. In the Editor, strings must be surrounded by
two matching punctuation characters (called delimiters) so the editor knows where the string begins
and ends. The charactersused for delimitersare not considered part of the string and cannot al so appear
within the string. Strings used by the Editor should not be confused with BASIC09's data type which
isalso called STRING — they are different creatures.

The*“s’ command may be used to locate the next occurrence or all occurrences of astring. The format
for thiscommand is:

s delimmatch str [delini
s*delimmatch str [delini

Thefirst format searchesfor themat ch st r starting on the current edit pointer line onward. If any
line at or following the edit pointer includes a sequence of characters that match the search string, the
edit pointer is moved to that line and the line is displayed. If the string cannot be located, the message:

CAN' T FIND: "match str”

will be displayed and the edit pointer will remain at its original position. The “s*” variation searches
for all occurrences of the string in the procedure starting at the present edit pointer and displays all
linesit isfound in. The edit pointer ends up at the last line the string occurred in.

Here are some examples:

E: s/ counter/ Looks for the string: counter
E:s.1/2. Looks for the string: 1/2
E: s?three blind nice? Looks for the string: three blind nice

Change: String Substitution

The“c” change string function isavery handy tool that can eliminate a tremendous amount of typing.
It allows strings within lines to be located, removed, and replaced by another string. Thiscommand is

20

Change: String Substitution

very commonly used for things like: fixing lines with errors without having to retype the entire line,
changing a variable name throughout a program, etc. Its formats are:

c delimmatch str delimrepl str [delini
c*delimmatch str delimrepl str [delini

In the first form, the editor looks for the first occurrence of the match string starting at the present
edit pointer position. If found, the match string is removed from the line and the replacement string
isinserted in its place. The second form works the same way, but changes ALL occurrences of the
match string in the procedure starting at the present edit pointer position.

The“c*” command will stop anytime it finds or causes a line with an error. It cannot be used to find
or change line numbers.

A word of warning: sometimesyou can inadvertently changealineyou didn't intend to change because
the match string is embedded in alonger string. For example, if you attempt to change “no” to “yes’
and theword “normal” occursbeforethe“no” you arelooking for, “normal” will changeto “yesrmal”.

Examples:

c/ xval /yval /
c*, GOSUB 5300, GOSUB 5500

21

22

Execution Mode

Running Programs

To run aBASICO9 procedure, enter:
RUN pr ocnane

If the procedure you want to run was the last procedure edited, listed, saved, etc., you can type RUN
without giving a procedure name (the “*” shown in the DIR command identifies this procedure).

If the procedure expects parameters (see Chapter 7), they can be given on the same command line,
however they must all be constant numbers or strings, as appropriate, and must be given in the correct
order. For example:

RUN add(4, 7)

isused to call aprogram that expects parameter, such as

PROCEDURE add

PARAMVETER a, b a,b will receive the values 4,7
PRI NT a+b

END

The ability to pass parameters to a program alows you to specifically initialize program variables.
Sometimes certain procedures are parts of alarger software system and are designed to be called from
other procedures. Y ou can use this feature to individually test such procedures by passing them test
values as parameters.

The RUN statement causes BA SICO09 to enter Execution Mode, causing the procedure to run until one
of the these things happen:

1. an END or STOP statement is executed
2. you type[CTRL*HH

3. arun-time error occurs

4. you type [CTRL}H] (keyboard interrupt)

In cases 1 and 2, you will return to system mode. In cases 3 and 4, you will enter DEBUG mode.

Execution Mode: Technically Speaking

The RUN statement is simple and normally you do not need to know what is happening inside
BASIC09 when you use it. The technical description of execution mode that follows is given for the
benefit of advanced BASICO09 programmers.

Execution mode is BASIC09's state when you run any procedure. It involves executing the I-code of
one or more proceduresinside or outside the workspace. Many procedures can be in use because they
can call each other (or themselves) and nest exactly like subroutines. Y ou can enter execution mode
in anumber of ways:

1. By means of the RUN system command.

2. By BASIC09's auto-run feature.

23

Execution Mode:
Technically Speaking

The Auto-run feature allows BASIC09 to get the name of afileto load and run from the same command
lineusedto call BASIC09. Thefileloaded and run can be either aSAVED file (inthedatadirectory), or
aPACKED file(inthe execution directory). Thefile may contain several procedures; the one executed
isthe one with the same name asthefile. Parameters may be passed following the pathname specified.
For example, the following OS-9 command lines use this feature:

0S9: BASI C09 printreport("Past Due Accounts")
0S9: BASI C09 eval uat e(COS(7.8814)/12. 075, -22.5,129. 055)

24

Debug Mode

Overview of Debug Mode

One of BASIC09's outstanding features is its set of powerful symbolic debugging commands. What
is Symbolic Debugging? Simply stated, it is testing and manipulation of programs using the actual
names and program statements used in the program. In this chapter you will learn how Debug Mode
can let you watch your program run in slow motion you can observe each statement asit is executed.
As abonus, you will also learn how to use the Debug Mode as a calcul ator.

Debug mode is entered from execution mode in one of three ways:

1. When an error occurs during execution of a procedure (that is not intercepted by an ON ERROR
GOTO statement within the program).

2. When a procedure executes a PAUSE statement.
3. When a keyboard interrupt (control-C) occurs.

When any of the above happen, Debug M ode announcesitself by displaying the suspended procedure
name like this:

BREAK: PRCCEDURE t est5
D:

Notice that Debug Mode displays a “D:” prompt when it is awaiting a command. Any debug mode
commands can the be used to examine or change variables, turn trace mode on/off, etc. Depending
on which commands are used, execution of the program can be terminated, resumed, or executed one
source line at atime.

Debug Mode Commands

$ text

Calls 0S-9's Shell command interpreter to run a program or OS-9 command. Exactly the same as the
System Mode “$” command.

BREAK proc nane

Setsup a“breakpoint” at the procedure named. Thiscommand isused when procedurescall each other,
and provides away to re-enter Debug M ode when returning to a specific procedure. To illustrate how
BREAK works, suppose there are three procedures in the workspace: PROC1, PROC2, and PROC3.
Assume that PROCL calls PROC2, which in turn calls PROC3. While PROC3 is executing, you type
[Contral]+[] to enter debug mode. Y ou can now enter:

D. BREAK procl
ok
D:

Notice that BREAK respondswith “ok” if the procedure was found on the current RUN stack. If you
wish you can use the STATE command to verify that the three procedures are “ nested” as expected.
Now, you can resume execution of PROC3 by typing CONT. After PROC3 terminates, control passes

25

Debug Mode Commands

back to PROC2, which eventually returns to PROC1. As soon as this happens, the breakpoint you set
is encountered, PROCL is suspended, and Debug Mode is reentered.

There are three characteristics of BREAK you should note;
1. The breakpoint is removed as soon as it occurs.
2. You can use one breakpoint for each active procedure.

3. You can't put a breakpoint on a procedure unlessit has been called but not yet returned to. Hence,
BREAK cannot be used on procedures that have not yet been run.

CONT

The command causes program execution to continue at the next statement. It may resume programs
suspended by Control-C, PAUSE statements, BREAK command breakpoints, or after non-fatal run-
time errors.

DEG
RAD

These commands select either degrees or radians as the angle unit measure used by trigonometric
functions. These commands only affect the procedure currently being debugged or run.

DI R [pat h]

Displays the workspace procedure directory in exactly the same way as the System Mode DIR
command.

END or Q

Terminates execution of all procedures and exits Debug Mode by returning to System Mode. Any
open paths are closed at this point.

LET var := expr

This command is essentially the same as the BASIC09 LET program statement, which allows the
value of aprocedure variableto be set to anew value using the result of the evaluated expression. The
variable names used in this command must be the same asin the original “source” program; otherwise,
an error is generated. LET does not work on user-defined data structures.

LI ST

Displays a formatted source listing of the suspended procedure with 1-code addresses. An asterisk is
printed to the left of the statement where the procedure is suspended. Only list the current procedure
may be listed.

PRI NT [#expr,] [USING expr,] expr |ist

Thisis exactly the same as the BASIC09 PRINT statement and can be used to examine the present
value of variables in the suspended program. All variable names must be the same as in the original
program, and no new variable names can be used. User-defined data structures cannot be printed.

26

Debugging Techniques

STATE

This command liststhe calling (“nesting”) order of all active procedures. The highest-level procedure
is always shown at the bottom of the calling list, and the lowest-level procedure will always be the
suspended procedure. An example:

D:. state

PROCEDURE DELTA
CALLED BY BETA
CALLED BY ALPHA
CALLED BY PROGRAM

STEP [nunber] or

This command allows the suspended procedure to be executed one or more source statements at a
time. For example, “STEP 5” would execute the equivalent of the next 5 source statements. A debug
command linewhichisjust acarriagereturn is considered the sameas“STEP 1". The STEP command
is most commonly used with the trace mode on, so the original source lines can be seen as they are
executed.

Note: because compiled I-code contains actual statement memory addresses, the “top” or “bottom”
statements of loop structures are usually executed just once. For example, in FOR...NEXT loops the
FOR statement is executed once, so the statement that appears to be the top of the loop is actually the
one following the “FOR” statement.

TRON
TROFF

These commands turn the suspended procedure's trace mode on and off. In trace mode, the compiled
code of each equivalent statement line is reconstructed to source statements and displayed before the
statement is executed. If the statement causes the eval uation of one or more expressions, an equal sign
and the expression result(s) are displayed on the following line(s).

Trace mode islocal to a procedure. If the suspended procedure calls another, no tracing occurs until
control returns back (unless of course, other called procedure(s) have trace mode on).

Debugging Techniques

If your program does not do what you expect it to, it is bound to show one of two symptoms: incorrect
results, or premature termination due to an error. The second case will automatically send you into
Debug Mode. In the first case, you have to force the program into Debug Mode either by hitting
[Contra]+[] (assuming you have time to do so), or by using Edit Mode to put one or more PAUSE
statementsin the program. Once you're in Debug Mode, you can bring its powerful commandsto bear
on the problem.

Usually the first step after an error stops the program is to place a PAUSE statement at the beginning
of the suspected procedure or at a place within it where you think things begin to go amiss, and the
you rerun the program. When the program hits the PAUSE statement, and enters DEBUG mode, it is
time to turn the trace mode on and actually watch your program run. To do so, just type:

D: TRON
After you have done this, you hit the carriage return key once for every statement. Y ou will see the

original source statement, and if expressions are evaluated by the statement, Debug Mode will print an
equal sign and the result of the expression. Natice that some statements such as FOR and PRINT may

27

Debug Mode as a Desk Calculator

cause more than one expression to be evaluated. Using this technique, you can watch your program
run one step at a time until you see where it goes wrong. But what if in the process of tracing, you
encounter a loop that works OK, but executes 200 statements repetitively? That's a lot of carriage
returns. Inthiscase, turn thetrace off (if you want) and use the STEP command to quickly run through
the loop. Then, turn trace mode back on, and resume single-step debugging. The command sequence
for thisexampleis:

D: TROFF
D: STEP 200
D: TRON

Don't forget that trace mode is “local” to one procedure only. If the procedure under test returns to
another procedure you need to use the BREAK command or put a PAUSE statement in the procedure
to enter Debug Mode. If you call another procedure from the procedure being debugged, tracing will
stop when it is called until it returns. If you also want to trace the called procedure, it will need its
own PAUSE statement.

Debug Mode as a Desk Calculator

The simple program listed below turns Debug Mode into a powerful desk calculator. It's function is
simple: it declares 26 working variables, then goesinto Debug M ode so you can useinteractive PRINT
and LET statements.

PROCEDURE Cal cul at or

DIMa, b,c,d,e, f,g, h,i,j,k,I,m
DIMn,o,p,qg,r,s,t,u,v,wx,y, z
PAUSE

END

Recall that whilein debug mode, you cannot create new variables, hencethe DIM statementsthat pre-
define 26 working variables for you. If you wish you can add more or fewer variables. The PAUSE
statement causes Debug Mode to be entered. Here's a sample session:

B: run cal cul ator

BREAK: PROCEDURE Cal cul at or
D:let x:=12.5

D:print sin(pi/2)

. 7071606781

D:let y:=exp(4+0.5)

D:print x,y

12.5 90. 0171313

D Q

B:

Don't forget that the Debug Mode PRINT command can use PRINT USING to produce formatted
output (including hexadecimal).

By adding lessthan adozen statementsto the program, you can make it storeitsvariableson adisk file
so they're remembered from session to session. There are also many other enhancement possibilities

28

Data Types, Variables and Data
Structures

Why are there different data types?

A computer program's primary function is to process data. The performance of the computer, and
even sometimes whether or not a computer can handle a particular problem, depends on how the
software stores datain memory and operates on it. BASICQ09 offers many possibilities for organizing
and manipulating data.

Complicating matters somewhat is the fact that there are many kinds of data. Some data are numbers
used for counting or measuring. Another example is textual data composed of letters, punctuation,
etc., such as your name. Seldom can they be mixed (for example multiplication is meaningless to
anything but numbers), and they have different storage size requirements. Even within the same
genera kind of data, it is frequently advantageous to have different ways to represent data. For
example, BASICO9 lets you chose from three different ways to represent numbers - each having its
own advantages and disadvantages. The decision to use one depends entirely on the specific program
you are writing. In order for you to select the most appropriate way to store data variables, BASIC09
provides five different basic data types. BASIC09 aso lets you create new customized data types
based on combinations of the five basic types. A good analogy isto consider the five basic typesto be
atoms, and the new types you create as molecules. Thisiswhy the five basic types are called atomic
data types.

Data Structures

A data structurerefersto storage for more than one dataitem under asingle name. Data structures are
often the most practical and convenient way to organize large amounts of similar data. The simplest
kind of data structure is the array, which is a table of values. The table has a single name, and the
storage space for each individual value is numbered. Arrays are created by DIM statements. For
example, to create an array having five storage spaces called “AGES’, we can use the statement:

DI M AGES(5) : | NTEGER

“(5)” tells BASIC09 how many spaces to reserve. The “:INTEGER” part indicates the array's data
type. To assign avalue of 22 to the third storage space in the array we can use the statement:

LET AGES(3): =22

As you shall see, BASICO9 lets you create complex arrays and even arrays that have different data
types combined.

Atomic Data Types

BASICO09 includes five atomic datatypes: BY TE, INTEGER, REAL, STRING and BOOLEAN. The
first three types are used to represent numbers, The STRING typeis used to represent character data,
and the BOOLEAN typeis used to represent the logical values of either TRUE or FALSE. Arrays of
any of these data types can be created using one, two, or three dimensions. The table below gives an
overview of the characteristics of each type:

Table 3. BASICO09 Atomic Data Type Summary

Type: Allowable values: Memory requirement:
BYTE Whole Numbers 0 to 255 One byte

29

Type BYTE

Type: Allowable values: Memory requirement:
INTEGER Whole Numbers -32768 to 32767 Two bytes

REAL Floating Point +/- 1* 1038 Five bytes

STRING Letters, digits, punctuation One byte/character
BOOLEAN True or False One byte

Why are there three different ways to represent numbers? Although REAL numbers appear to be
the most versatile because they have the greatest range and are floating-point, arithmetic operations
involving them arerelatively slower (by afactor of about four) compared to the INTEGER or BY TE
types. Thususing INTEGER valuesfor loop counters, indexing arrays, etc. can significantly speed up
your programs. The BY TE typeis not appreciably faster than INTEGER, it conserves memory space
in some cases and serves as a building block for complex data types in other cases. If you neglect to
specify the type of avariable, BASIC09 will automatically use the REAL datatype.

Type BYTE

BY TE variables hold integer valuesin the range 0 through 255 (unsigned 8-bit data) which are stored
as a single byte. BYTE values are always converted to another type (16-bit integer values and/or
real values) for computation, thus they have no speed advantage over other numeric types. However,
BYTE variables require only half of the storage used by integers, and an 1/5 of that used by reals.
Attempting to store an integer value outsidethe BY TE rangeto aBY TE variable resultsin the storage
of the least-significant 8-hits (the value modulo 256) without error.

Type INTEGER

INTEGER variables consist of two bytes of storage, and hold a numeric value in the range -32768
through 32767 assigned 16-bit data. Decimal pointsare not allowed. INTEGER constants may also be
represented as hexadecimal valuesin the range $0000 through $FFFF to facilitate address cal cul ations.
INTEGER values are printed without adecimal point. INTEGER arithmetic isfaster and requires|ess
storage than REAL values.

Arithmetic which results in values outside the INTEGER range does not cause run-time errors but
instead “wraps around” modulo 65536; i.e., 32767 + 1 yields-32768. Division of an integer by another
integer yields an integer result, and any remainder is discarded. The programmer should be aware that
numeric comparisons made on valuesin the range 32767 through 65535 will actually be dealing with
negative numbers, soit may be desirableto limit such comparisonsto testsfor equality or non-equality.
Additionally, certain functions (LAND, LNOT, LOR, LXOR) use integer values, but produce results
on a non-numeric bit-by-bit basis.

Type REAL

TheREAL datatypeisthe default typefor undeclared variables. However, avariable may be explicitly
typed REAL (for example, twopi:REAL) to improve a program'sinternal documentation. REAL-type
valuesare always printed with adecimal point, and only those constants which include adecimal point
are actually stored as REAL values.

REAL numbers are stored in 5 consecutive memory bytes. The first byte is the (8-bit) exponent
in binary two's-complement representation. The next four bytes are the binary sign-and-magnitude
representation of the mantissa; the mantissain the first 31 bits, and the sign of the mantissain the last
(least significant) bit of the last byte of the real quantity.

30

Type STRING

Figure 2. Internal Representation of REAL Numbers

| exponent | | | | | S| <- mant. sign

byt e: +0 +1 +2 +3 +4

The exponent coversthe range 2.938735877 * 10"-39 (27-128) through 1.701411835 * 1038 (2"127)
as powers of 2. Operations which result in values out of the representation range cause overflow or
underflow errors (which may be handled automatically by the ON ERROR command). The mantissa
coverstherangefrom 0.5 through .9999999995 in steps of 2°-31. Thismeansthat REAL numberscan
represent values on the number line about .0000000005 apart. Operations which cause results between
the representabl e points are rounded to the nearest representable number.

Floating point arithmetic isinherently inexact, thus a sequence of operations can produce acumulative
error. Proper rounding (as implemented in BASIC09) reduces this effect but cannot eliminate it.
Programmers using comparisons on REAL quantities should use caution with strict comparisons(i.e.,
= or <>), since the exact desired value may not occur during program execution.

Type STRING

A STRING is a variable length sequence of characters or nil (an empty string). A variable may
be defined as a STRING either explicitly (e.g., DIM title:STRING) or implicitly by appending a
dollar-sign character to the variable name (title$:= "My First Program."). The default maximum
length allocated to each string is 32 characters, but each string may be dimensioned less (e.g., DIM
A:STRING [4]) for memory savings or more (e.g., DIM long:STRING [2880]) to allow long strings.
Notice that strings are inherently variable-length entities, and dimensioning the storage for a string
only defines the maximum-length string which can be stored there. When a STRING valueis assigned
to a STRING variable, the bytes composing the string are copied into the variable storage byte-by-
byte. The beginning of astring is always character number one, and thisis not affected by the BASEOQ
or BASEL statements. Operations which result in strings too long to fit in the dimensioned storage
truncate the string on the right and no error is generated.

Normally the internal representation of the string is hidden. A string is stored in a fixed-size storage
area and isrepresented by a sequence of bytesterminated by the value 255 or by the maximum length
allocated tothe STRING variable. Any remaining “ unused” storage after the 255 byte allowsthe stored
string to expand and contract during execution. The example below shows the internal storage of a
variable dimensioned as STRING[6] and assigned a value of “SAM”. Natice the byte at +3 contains
the 255 string terminator, and the two following bytes are not used.

byt e: +0 +1 +2 +3 +4 +5

If the value “ROBERT” is assigned to the variable, the 255 byte terminator is not needed because the
STRING fills the storage exactly:

byt e: +0 +1 +2 +3 +4 +5

Type BOOLEAN

A BOOLEAN quantity can have only two values: TRUE or FALSE. A variable may be typed
BOOLEAN (e.g., DIM done flag:BOOLEAN). BOOLEAN quantities are stored as single byte

31

Automatic Type Conversion

values, but they may not be used for numeric computation. BOOLEAN values print out as the
character strings: “TRUE” and “FALSE.” BOOLEAN values result from comparisons (comparing
two compatible types), and are appropriate for logical flags and expressions. (result:=aAND b AND
¢). Do not confuse BOOLEAN operations AND, OR, XOR, and NOT (which operate on the Boolean
values TRUE end FALSE) with the logical functions LAND, LOR, LXOR, and LNOT (which use
integer values to produce results on a bit-by-bit basis). Attempting to store a non-BOOLEAN value
inaBOOLEAN variable (or the reverse) will cause arun-time error.

Automatic Type Conversion

Expressions that mix numeric data types (BYTE, INTEGER, or REAL) are automatically and
temporarily converted to the largest type necessary to retain accuracy. In addition, certain BASIC09
functions also perform automatic type conversions as necessary. Thus, numeric quantities of mixed
types may be used in most cases. Type-mismatch errors happen when an expression includestypesthat
cannot legally be mixed. These errors are reported by the second compiler pass which automatically
occurs when you leave EDIT mode. Type conversions can take time. Therefore, you should use
expressions containing all values of asingle type wherever possible.

Constants

Constants are frequently used in program statements and in expressions to assign values to variables.
BASICO09 has rules that allow you to specify constants that correspond to the five basic data types.

Numeric Constants

Numeric constants can be either REAL or INTEGER. If a number constant includes a decimal point
or usesthe“E format” exponential form, it forces BASIC09 to store the number in REAL format even
if the value could have been stored in INTEGER or BY TE format. Thus, if you specifically want to
specify a REAL constant, use adecimal point (for example, 12.0). Thisis sometimes doneif all other
values in an expression are of type REAL so BASIC09 does not have to do a time-consuming type
conversion at run-time.

Numbersthat do not have adecimal point but aretoo large to be represented asintegers are al so stored
in REAL format. The following are examples of REAL values:

1.0 9.8433218
-.01 -999.000099
100000000 5655.34532
1.95E+12 -99999.9E-33

Numbers that do not have a decimal point and are in the range of -32768 to +32767 are treated as
INTEGER numbers. BASIC09 will also accept integer constants in hexadecimal in the range 0 to
$FFFF. Hex numbersmust have aleading dollar sign. Here are some exampl esof INTEGER constants:

12 -3000 64000
$20 $FFFE $0
0 12 -32768

Boolean Constants

The two legal Boolean constants are“ TRUE” and “FALSE”.

Example:

32

String Constants

DIMflag, state: BOOLEAN
flag : = TRUE
state : = FALSE

String Constants

String constants consist of a sequence of any characters enclosed in double quote characters. The
binary value of each character byte can be 1 to 255. Double quote charactersto beincludedin thestring
use two charactersin arow to represent one double quote. The null string “” is important because it
represents a string having no characters. It is analogous to the numeric zero. Here are some examples
of string constants:

"BASI C09 is a new m croconputer |anguage”
" AABBCCDD'

(a null string)

"An ""ol der man"" is w ser"

Variables

Each BASICO09 variable is “local” to the procedure where it is defined. This means that it is only
known to the program statementswithin that procedure. Y ou can use the same variable namein several
procedures and the variableswill be completely independent. If you want other proceduresto be ableto
shareavariable, you must usethe RUN and PARAM statementsto pass the variable when aprocedure
calls another procedure.

Storage for variablesis allocated from the BA SIC09 workspace when the procedureis called. It is not
possible to force avariable to occupy a particular absolute address in memory. When the procedure is
exited, variable storageis given back and thevaluesstoredinit arelost. Procedures can call themselves
(this is referred to as recursion) which causes another separate storage space for variables to be
allocated.

Warning

BASICO09 does not automatically initialize variables. When a procedure isrun, all variables,
arrays, and structures will have random values. Y our program must assign any initial value
if needed.

Parameter Variables

Procedures may pass variablesto other procedures. When thisoccurs, the variables passed to the called
procedure are called “ parameters’ . Parameters may be passed either “ by reference”, allowing valuesto
bereturned from the called procedure, or “ by value”, which protectsthe valuesin the calling procedure
such that they may not be changed by the procedure which is called.

Parameters are usually passed “by reference’; this is done by enclosing the names of the variables
to be sent to the called procedure in parentheses as part of the RUN statement. The storage address
of each parameter variable is evaluated and sent to the called procedure, which then associates those
addresses with names in a local PARAM statement. The called procedure uses this storage as if it
had been created locally (although it may have a new name) and can change the values stored there.
Parameters passed by reference allow called procedures to return valuesto their callers.

Parameters may be passed “by value” by writing the value to be passed as an expression which is
evaluated at the time of the call. Useful expression-generators that do not alter values are +0 for
numbers or +"" for strings. For example:

33

Arrays

RUN i nver se(x) passes x by reference.
RUN i nver se(x+0) passes x by val ue.

RUN transl at e(wor d$) passes word$ by reference.
RUN transl at e(wor d$+"") passes word$ by val ue.

When parametersare passed by value, atemporary variableiscreated when the expressionisevaluated.
Theresult is placed in this new temporary storage. The address of thistemporary storageis sent to the
called procedure. Therefore, the value actually given to the called procedureisacopy of theresult, and
the called procedure can't accidentally (or otherwise) change the variable(s) in the calling program.

Notice that expressions containing numeric constants are either of type INTEGER or of type REAL;
there is no type BYTE constant. Thus, BY TE-type VARIABLES may be sent to a procedure as
parameters; but expressionswill be of typesINTEGER or REAL . For example, aRUN statement may
evaluate an INTEGER as a parameter and send it to the called procedure. If the called procedure is
expecting aBY TE-type variable, it uses only the high-order byte of the (two-byte) INTEGER (which,
if the value was intended to bein BY TE-range, will probably be zerol).

Arrays

The DIM statement can create arrays of from 1 to 3 dimensions (aone-dimensional array isoften called
a“vector”, while a2 or 3 dimensional array is called a“matrix”). The sizes of each dimension are
defined when the array is typed (e.g., DIM plot(24,80):BY TE) by including the number of elements
in each dimension. Thus, atable dimensioned (24,80) has 24 rows (1-24) of 80 columns (1 - 80) when
accessed in the default (BASE 1) mode. Y ou may elect to access the elements of an array starting at
zero (BASE 0), in which case there are still 24 rows (now 0-23) and 80 columns (now 0-79). Arrays
may be composed of atomic data types, complex data types, or other arrays.

Complex Data Types

The TY PE statement can be used to define a new data type as a “vector” (a one-dimensional array)
of any atomic or previously-defined types. For example:

TYPE enpl oyee_rec = nane: STRING nunber(2):1NTEGER;, mal esex: BOOLEAN

This structure differs from an array in that the various elements may be of mixed types, and the
elements are accessed by afield name instead of an array index. For example:

DI M enmpl oyee_fil e(250): enpl oyee_rec
enpl oyee file(1l).name := "Tex"
enpl oyee_fil e(20). nunber(2) := 115

The complex structure gives the programmer the ability to store and manipulate related values that
are of many types, to create “new” types in addition to the five atomic data types, or to create data
structures of unusual “shape” or size. Additionally, the position of the desired element in complex-type
storage is known and defined at “compile time” and need not be calculated at “run time”. Therefore,
complex structure accesses may be dightly faster than array accesses. The elements of a complex
structure may be copied to another similar structure using asingle assignment operator (:=). Anentire
structure may be written to or read from mass storage as asingle entity (e.g., PUT #2, employee file).
Arrays or complex structures may be elements of subsequent complex structures or arrays.

Expressions, Operators, and
Functions

Evaluation of Expressions

Many BASICO09 statements evaluate expressions. The result of an evaluation isjust a value of some
atomic type (e.g., REAL, INTEGER, STRING, or BOOLEAN). The expression itself may consist of
values and operators. For example, the expression “5+5” results in an integer with a value of ten.

A “value’ can be a constant value (e.g, 5.0, 5, "5" , or TRUE), a variable name, or a function (e.g,
SIN(X)) which “returns’ the result asavalue. An operator combines values (typically, those adjacent
to the operator) and also returns aresullt.

Inthe course of evaluating an expression, each valueis copied to an “ expression stack” wherefunctions
and operators take their input values and return results. If (as is often the case) the expression isto
be used in an assignment statement, only when the result of the entire expression has been found is
the assignment made. This allows the variable which is being modified (assigned to) to be one of the
valuesin the expression. The same principles apply for numeric, string, and Boolean operators. These
principles make assignment statements such as “X=X+1" legal in al cases, even though it would not
make sense in a mathematical context.

Any expression evaluates to one of the five “atomic” data types, i.e., real, integer, byte, Boolean, or
string. Thisdoes not mean, however, that all the operators and operandsin expressions haveto be of an
identical type. Often typesare mixed in expressions becausethe RESUL T of some operator or function
has a different type than its operands. An example isthe “lessthan” operator. Here is an example:

24 < 100

The“<” operator comparestwo numeric operands. Theresult of the comparisonisof type BOOLEAN;
in this case, the value TRUE.

BASICO09 alowsintermixing of the three numeric typesbecause it performs automatic type conversion
of operands. If different types are used in an expression, the “result” will be the same type as the
operand(s) having the largest representation. As arule, any numeric type operand may be used in a
expression that is expected to produce a result of type REAL. Expressions that must produce BY TE
or INTEGER results must evaluate to avalue that is small enough to fit the representation. BASIC09
has a complete set of functions that can perform compatible type conversion. Type-mismatch errors
are reported by the second compiler pass when leaving Edit mode.

Operators

Operators take two operands (except negation) and cause some operation to be performed producing
aresult, which is generally the same type as the operands (except comparisons). The table below lists
the operators available and the types they accept and produce. “NUMERIC” refers to either BYTE,
INTEGER, or REAL types.

Table4. BASICO09 Expression Operators

Operator Function Operand type Result type
- Negation NUMERIC NUMERIC
Nor** Exponentiation NUMERIC (positive) NUMERIC
* Multiplication NUMERIC NUMERIC
/ Division NUMERIC NUMERIC

35

Operator Precedence

Operator Function Operand type Result type
+ Addition NUMERIC NUMERIC
- Subtraction NUMERIC NUMERIC
NOT Logical Negation BOOLEAN BOOLEAN
AND Logical AND BOOLEAN BOOLEAN
OR Logica OR BOOLEAN BOOLEAN
XOR Logica EXCLUSIVEOR BOOLEAN BOOLEAN
+ Concatenation STRING STRING

= Equa to ANY BOOLEAN
<>o0r>< Not equal to ANY BOOLEAN
< Lessthan NUMERIC, STRING* BOOLEAN
<=or =< Lessthan or Equal NUMERIC, STRING* BOOLEAN
> Greater than NUMERIC, STRING* BOOLEAN
>=or => Greater than or Equal NUMERIC, STRING* BOOLEAN

When comparing strings, the ASCII collating sequenceisused, sothat 0 <1< .. <9<A <B<..

<Z<a<b<.

.<z

Operator Precedence

Operators have “precedence”. This meansthey are evaluated in a specific order. (i.e., multiplications
performed before addition). Parentheses can be used to override natural precedence, however,
extraneous parentheses may be removed by the compiler. The legal operators are listed below, in
precedence order from highest to lowest.

Highest Precedence

NOT -(negate)
A *ok

* /

+ -

> <

AND

OR XOR

Lowest Precedence

<> =

Operatorsof equal precedenceare shown onthe sameline, and are evaluated | eft to right in expressions.
The only exception to this rule is exponentiation, which is evaluated right to left. Raising a negative
number to a power is not legal in BASICO9.

In the examples below, BASICO09 expressions on the | eft are evaluated asindicated on the right. Either
form may be entered, but the simpler form on the left will always be generated by the decompiler.

BASICO09 representation
a=b+c**2/d

a=b>c AND d>e OR c=e
a= (b+c+d)/e
a=Db**c**dle
a=-(b)**2

a=b=c

Equivalent form

a= b+((c**2)/d)

a= ((b>c) AND (d>e)) OR (c=€)

a= ((b+c)+d)/e

a= (b**(c**d))/e

a=(-b)**2

a= (b=c) (returns BOOLEAN value)

36

Functions

Functions

Functions take one or more arguments enclosed in parentheses, perform some operation, and return
avalue. They may be used as operands in expressions. Functions expect that the arguments passed
to them be expressions, constants, or variables of a certain type and return a result of a certain type.
Giving afunction, an argument of an incompatible type will result in an error.

In the descriptions of functions that follow, the following notation describes the type required for the
parameter expressions:

num means any numeric-result expression.
str means any string-result expression.
i nt means any integer-result expression.

The functions below return REAL results. Accuracy of transcendental functionsis 8+ decimal digits.
Angles can be either degrees or radians (see DEG/RAD statement descriptions).

SIN(num trigonometric sine of num

COS(num) trigonometric cosine of num

TAN(num trigonometric tangent of num

ASN(num trigonometric arcsine of num

ACS(num trigonometric arccosine of num

ATN(num trigonometric arctangent of num

LOG(hum natural logarithm (base €) of num

LOG10(num logarithm (base 10) of num

EXP(num e(2.71828183) raised to the power num which must be a positive number
FLOAT(num numeconverted to type REAL (from BY TE or INTEGER)
INT(num truncates all digitsto the right of the decimal point of a REAL num
Pl the constant 3.14159265.

SQR(num sguare root of num which must be positive.

SOQRT(nun square root of num same as SQR.

RND(hum if num=0, returnsrandom x, 0 <=x < 1.

if num> 0, returnsrandom x, 0 <= X < hum
if num< 0, use ABS(numj as new random number seed.

Thefollowing functions can return any numeric type, depending on thetype of theinput parameter(s).

ABS(hum absolute value of num

SGN(num signum of num -1if num<0; 0if num=0; or 1if num>0
SQ(num) numsquared

VAL(str) convert type string to type numeric

The following functions can return results of type INTEGER or BYTE:

FIX(num round REAL num (up/down as appropriate) and convert to type
INTEGER.

MOD(nuni,nun®) modulus (remainder) function. nuni mod nun®.

ADDR(nane) absolute memory address of variable, array, or structure named narre.

SIZE(nane) storage sizein bytes of variable, array, or structure named nane.

37

Functions

ERR

PEEK(i nt)

POS

ASC(str)

LEN(str)
SUBSTR(str1,str2)

error code of most recent error, automaticaly resets to zero when
referenced.

value of byte at memory addressi nt .
current character position of PRINT buffer.
numeric value of first character of str.
length of string st r.

substring search: returns starting position of first occurrence of str 1 in
str2,orQif not found.

The following functions perform bit-by-bit logical operations oninteger or byte data types and return
INTEGER results. They should not be confused with the BOOL EAN-type operators.

LAND(numnum
LOR(numnum
LXOR(numnun
LNOT(num

Logical AND

Logical OR

Logical EXCLUSIVE OR
Logica NOT

These functions return aresult of type STRING:

CHR$(i nt)

DATES

LEFTS$(str i nt)
RIGHT$(st r,i nt)
MID$(st r,i nt 1,i nt 2)
STR$(hum

TAB(num

TRIM$(st r)

ASCI| char. equivalent of i nt

date and time, format: "yy/mm/dd hh:mm:ss"

leftmost i nt charactersof str.

rightmost i nt charactersof str.

middlei nt 2 charactersof st r starting at character positioni nt 1.

converts numeric type numto displayable characters of type STRING
representing the number converted.

returns the correct number of spaces to cause the next item to start in
the print column specified by num If the output line is already past
the desired tab position, the TAB returns an empty string.

st r with trailing spaces removed.

The following functions return BOOL EAN values:

TRUE
FALSE
EOF(#num

always returns TRUE.
always returns FALSE.

End-of-file test on disk file path num returns TRUE if end-of-file
condition

38

Program Statements and Structure

Program Structure

Each BASIC09 can be a complete program in itself, or several procedures that call each other can be
used to create an application program. It is up to the programmer to decide which approach to take.
One procedure may sufficefor small programs but large programs are easier to write and test if divided
into separate modules (procedures) according to the program's natural flow. These suggestions reflect
sound structured programming practice. Nonetheless, you can use a single large procedure for your

program if you so desire.

A procedure consists of any number of program statement lines. Each line can have an optional line
number, and more than one program statement can be placed on the same line if separated by “\”

characters. For example, the following statements are equivalent:

GOSUB 550\ PRINT X,Y \ RETURN
GOSUB 550
PRINT X,Y
RETURN

The maximum input line length is 255 characters. Line feeds can be used to make a single long line
into shorter lines to fit display screens better. This is especially useful when working on hard-copy

terminals.

Program statements can bein any order consistent with program | ogic Program readability isimproved
if al variables are declared with DIM statements at the beginning of the procedure, but this is not
mandatory. The program can be terminated with END or STOP statements, which are also optional.

Line Numbers

Line numbers are optional. They can be any integer number in the range of 1 to 32767. Only use
line numbers where absolutely necessary (such as with GOSUB). They make programs harder to
understand, use additional memory space, and increase compile time considerably. Line numbers are
local to procedures. i.e., the same line number can be used in different procedures without conflict.

Assighment Statements

Assignment statements are used for computing or initializing of variables.

LET Statement

Syntax:

[LET] var := expr
[LET] var = expr

[LET] struct := struct

[LET] struct = struct

This statement eval uates an expression and storestheresult invar which may beasimple variable or
data structure element. The result of the expression must be of the same or compatible type asvar .
BASICO09 will accept either “=" or “:=" as an assignment operator, however, the second form (:=) is
preferred because it distinguishes the assignment operation from a comparison (the test for equality).

The“:=" operator isthe same as used in PASCAL.

39

POKE Statement

Another use of the assignment statement isto copy theentirevalue of an array or complex datastructure
to another array or complex data structure. The data structures do not have to have the same type or
“shape’. The only restriction is that the size of the destination structure be the same or larger than the
source structure. In fact thistype of assignment can be used to perform unusual type conversions. For
example, astring variable of 80 characters can be copied to aone-dimensional array of 80 bytes.

Examples:

A:=0.1
val ue : = tenp/sin(x)

DI M arrayl(100), array2(100)
arrayl := array2

LET AUTHOR$:= FI RST_NAME$ + LAST NAMES$
DIMtruth,lie: BOOLEAN

lie := 100 < 1

truth := NOT lie

count = total-adjustnent
matri x(2).coefficient(n+2) := matrix(1).coefficient(n)

POKE Statement
Syntax:

POKE i nteger expr , byte expr

This statement allows a program to store data at a specific memory address. The first expression is
used as the absolute address to store the type BY TE result of the second expression. This statement
can alter any memory address so care must be taken when using it.

Examples:

POKE ADDR(buf f er) +5, ASC("A")
POKE 1200, 14
POKE $1C00, $FF
PCOKE poi nt er, PEEK(poi nt er +1)
(* alternative to: al phabet$:= "ABCDEFGH JKLMNOPQRSTUVWKYZ" *)
FOR i=0 to 25
POKE ADDR(al phabet $) +i , $40+i

NEXT i
POKE ADDR(al phabet $) +26, $FF

Control Statements

Thisclass of statements affect the (usually) sequential execution of program statements. They are used
to construct loops or make decisionsthat alter program flow. BASICQ9 provides a selection of looping
statements that allow you to create any kind of loop using sound structured programming style.

40

|F Statement: Type 1

IF Statement: Type 1
Syntax:

| F bool expr THEN line #

Thisform of theif statement causes execution to be transferred to the statement having the line number
specified if the result of the expression is TRUE, otherwise the next sequential statement is executed.
For example:

| F payment < bal ance then 400

IF Statement: Type 2
Syntax:

| F bool expr THEN statenents
[ELSE statenents]
ENDI F

This kind of IF structure evaluates the expression to a BOOLEAN value. If the result is TRUE the
statement(s) immediately following the THEN are executed. If an ELSE clause exists, statements
between the ELSE and ENDIF are skipped. If the expression is evaluated to FALSE control is
transferred to thefirst statement following the EL SE, if present, or otherwiseto the statement following
the ENDIF.

Examples:
IF a < b THEN

PRINT "a is | ess than b"
PRINT "a:";a;" b:":;b

ENDI F
IF a < b THEN
PRINT "a is less than b"
ELSE
| F a=b THEN
PRI NT "a equal s b"
ELSE
PRINT "a is greater than b"
ENDI F
ENDI F
FOR/NEXT Statement
Syntax:

FOR var = expr TO expr [STEP expr]
NEXT var

Creates a loop that usually executes a specified number of times while automatically increasing or
decreasing a specified counter variable. The first expression is evaluated and the result is stored in
var which must be asimple integer or real variable. The second expression is evaluated and stored

41

WHILE..DO Statement

in atemporary variable. If the STEP clause is used, the expression following is evaluated and used as
the loop increment. If it is negative, the loop will count down.

The“body” of theloop (i.e. statements between the“ FOR” and “NEXT” are executed until the counter
variable is larger than the terminating expression value. For negative STEP values, the loop will
execute until the loop counter is less than the termination value. If the initial value of var is beyond
the terminating value the body of the loop is never executed. It islegal to jump out of FOR/NEXT
loops. Theis no limit to the nesting of FOR/NEXT loops.

Examples:

FOR counter = 1 to 100 step .5
PRI NT count er
NEXT count er

FOR var = min-1 TO mi n+nax STEP i ncrenent - adj ust nment
PRI NT var
NEXT var

FOR x = 1000 TO 1 STEP -1
PRI NT X
NEXT x

WHILE..DO Statement

Syntax:

VWHI LE bool expr DO
ENDVWHI LE

Thisisaloop construct with the test at the “top” of the loop. Statements within the loop are executed
aslongasbool expr isTRUE. Thebody of theloop will not be executed if the Boolean expression
evaluates to FAL SE when first executed.

Examples:

VWH LE a<b DO is equivalent to 100 I F a>=b THEN 500
PRI NT a PRI NT a
a:= atl a:= atl
ENDWHI LE GOTO 100
500 REM

DI M yes: BOOLEAN
yes=TRUE
VWHI LE yes DO
PRI NT "yes! *;
yes : = P0OS<50
ENDVWHI LE

REM reverse the letters in word$
backward$:= ""
| NPUT wor d$
VHI LE LEN(wor d$) > 0 DO
backwar d$: = backward$ + Rl GHT$(wor d$, 1)

42

REPEAT..UNTIL Statement

wor d$: = LEFT$(wor d$, LEN(wor d$) - 1)
ENDVHI LE
wor d$: = backwar d$
PRI NT wor d$

REPEAT..UNTIL Statement

Syntax:

REPEAT
UNTIL bool expr

Thisisaloop that hasitstest at the bottom of the loop. The statement(s) within the loop are executed
until the result of bool expr isTRUE. The body of the loop is always executed at least one time.

Examples:

x =0 is the sane as x=0
REPEAT 100 PRI NT X

PRI NT x X=x+1

X=x+1 IF X <= 10 THEN 100
UNTI L x>10

(* conpute factorial: nl *)
temp = 1.
I NPUT "Factorial of what nunber? ",n
REPEAT
tenmp := tenp * n
n:=n-1
UNTIL n <= 1.0
PRI NT "The factorial is "; tenp

LOOP and ENDLOOP/EXITIF and ENDEXIT Statements
Syntax:

LOCP
ENDL OOP

EXI TI F bool expr THEN statenents
ENDEXI T

These related types of statements can be used to construct loops with test(s) located anywhere in the
body of the loop. The LOOP and ENDL OOP statements define the body of the loop. EXITIF clauses
can be inserted anywhere inside the loop to leave the loop if the result of itstest is true. Note that if
thereisno EXITIF clause, you will create aloop that never ends.

The EXITIF clause evaluates an expression to a Boolean result. If the result is FALSE, the statement
following the ENDEXIT is executed next. Otherwise, the statement(s) between the EXITIF and
ENDEXIT are executed, then control is transferred to the statement following the body of the loop.
This exit clause is often used to perform some specific function upon termination of the loop which
depends on where the loop terminated.

EXITIF statements are almost always used when LOOP..ENDLOOP is used, but they can also
be useful in ANY type of BASIC09 loop construct (e.g., FOR/NEXT, REPEAT... UNTIL, etc.).
Examples:

GOTO Statement

LOOP
count =count +1
EXI TIF count >100 THEN

is equivalent to

100 REMtop of | oop
count =count +1
I F COUNT <= 100 then 200

done = TRUE done = TRUE
ENDEXI T GOro 300

PRI NT count 200 PRI NT count

X = count/2 X = count/2
ENDL OOP GOro 100

300 REM out of | oop

I NPUT X,y
LOOP

PRI NT

EXITIF x < 0 THEN
PRI NT "x becane zero first"

ENDEXI T
X 1= x-1
EXITIFy < 0 THEN PRINT "y becane zero first”
ENDEXI T
y :=y-1
ENDL OOP
GOTO Statement
Syntax:
GOTO line #

The GOTO unconditionally transfers execution flow to the line having the specified number. Note
that the line number is a constant, not an expression or avariable.

Example:

GOTO 1000

GOSUB/RETURN Statements

Syntax:

GOSUB line #

RETURN

The GOSUB statement transfers program execution to a subroutine starting at the specified line
number. Thesubroutineisexecuted until aRETURN statement isencountered, which causes execution

to resume at the statement following the calling GOSUB. Subroutines may be “nested” to any depth.

Example:

FORn :=1to 10

X 1= SIN(n)
GOSUB 100
NEXT n

FORm:=1 TO 10

ON GOTO/GOSUB Statement

X 1= COS(m
GOosuUB 100
NEXT m
STOP

100 x := x/2
PRI NT x
RETURN

ON GOTO/GOSUB Statement

Syntax:

ON int expr GOTO line # {,|ine #}
ON int expr GOSUB line # {,line #}

These statements evaluate an integer expression and use the result to select a corresponding line
number from an ordered list. Control is then transferred to that line number unconditionally in ON
GOTO statements or asasubroutinein ON GOSUB statements. These statementsare similar to CASE
statements in other languages.

The expression must evaluate to a positive INTEGER-type result having a value between 1 and n,
n being the amount of line numbers in the list. If the result has any other result, no line number is
selected and the next sequential statement is executed.

Example:

(* spell out the digits 0 to 9 *)

DI M di gi t: | NTEGER

A$="one digit only, please"

INPUT "type in adigit"; digit

ON digit+1l GOsuB 10,11, 12,13, 14, 15, 16, 17, 18, 19
PRI NT A$

STOP

(* nanes of digits *)

10 A% : = "ZERO'
RETURN

11 A$ = "ONE'
RETURN

12 A$ = "TWO'
RETURN

13 A$: = "THREE"
RETURN

14 A% : = "FOUR'
RETURN

15 A$ = "FIVE'
RETURN

16 A$:= "SI X"
RETURN

17 A$: = "SEVEN'
RETURN

18 A$: = "El GHT"
RETURN

19 A% = "N NE'
RETURN

ON ERROR GOTO Statement

ON ERROR GOTO Statement

Syntax:

ON ERROR [GOTO line #]

This statement setsa “trap” that transfers control to the line number given when a non-fatal run-time
error occurs. If no ON ERROR GOTO has been executed in a procedure before an error occurs, the
procedurewill stop and enter DEBUG mode. The error trap can be turned of by executing ON ERROR
without a GOTO.

This statement is often used in conjunction with the ERR function, which returns the specific
error code, and the ERROR statement which artificially generates “errors’. Note: the ERR function
automatically resetsto zero any timeitis called.

Example:

(* List afile*)

DI M pat h, errnum | NTEGER, nane: STRINJ 45], line: STRI NJ 80]
ON ERROR GOTO 10

INPUT "File nanme? "; nane
OPEN #pat h, name: READ
LOOP

READ #pat h, line

PRI NT |ine
ENDL OOP

10 errnum=ERR

IF errnum = 211 THEN
(* end-of-file *)
PRI NT "Listing conplete.™
CLOSE #path
END

ELSE
(* other errors *)
PRI NT "Error nunber "; errnum
END

ENDI F

Execution Statements

Execution statements run procedures, stop execution of procedures, create shells, or affect the current
execution of the procedure.

RUN Statement

Syntax:
RUN proc nanme [(param {, paran})]
RUN string var [(param {, paran})]

This statement calls a procedure by name; when that procedure ends, control will pass to the next
statement after the RUN. It is most often used to call aprocedure inside the workspace, but it can also

46

RUN Statement

be used to call apreviously compiled (by the PACK command) procedure or a 6809 machine language
procedure outside the workspace. The name can be optionally taken from a string variable.

Parameter Passing

The RUN statement can include alist of parameters enclosed in parentheses to be passed to the called
procedure. The called procedure must have PARAM statements of the same size and order to match
the parameters passed to it by the calling procedure.

The parameters can be variabl es, constants, or the names of entirearraysor datastructures. They can be
of any type, (EXCEPT variable of type BY TE but BY TE arraysare O.K.). If aparameter isa constant
or expression, it is passed “by value”, i.e, it is evaluated and placed in a temporary storage location,
and the address of the temporary storageis passed to the called procedure. Parameters passed by value
can be changed by the receiving procedure, but the changes are not reflected in the calling procedure.

If the parameter isthe name of avariable, array, or data structure, it is passed by “reference’, i.e., the
address of that storageis sent to the called procedure and thusthe value in that storage may be changed
by the receiving procedure. These changes are reflected in the calling procedure.

Calling External Procedures

If the procedure named by RUN can't be found in the workspace, BASICO9 will check to seeif it was
loaded by OS-9 outsidetheworkspace. If itisn't found there, BASICO9will try to find adisk filehaving
the same name in the current execution directory, load it, and run it. In either case, BASIC09 checks
to seeif the called procedure is a BASIC09 I-code module or a 6809 machine language module, and
executesit accordingly. If it isa 6809 machine language module, BASIC09 executesa JSR instruction
to its entry point and the module is executed as 6809 native code. The machine language routine can
return to the original calling procedure by executing an RTSinstruction. The diagram on the next page
shows what the stack frame passed to machine-language subroutines looks like.

After an external procedure has been called but is no longer needed, the KILL statement should be
used to get rid of it so its memory space can be used for other purposes.

Figure 3. Stack Frame Passed to Machine L anguage Procedur es

o e + A

hi gher addresses

|

| size of 1st param
+ - - -
|
|

|
|
- - - . + 4 bytes
addr of 1st param | |
| |
o e e e e e + ---
| | |
| paraneter count | 2 bytes
| | |
o e e e e e + ---
| | |
| return address | 2 bytes
| | |
o + --- <- 6809 Stack Painter

Regi st er val ue

47

KILL Statement

Machine language modules return error status by setting the “C” bit of the MPU condition codes
register, and by setting the B register to the appropriate error code. For an example of a machine
language subroutine (“INKEY"), See Appendix A, Sample Programs.

Example of use of the RUN statement:

PROCEDURE trig table

numt := 0\ nun2 :=0

REPEAT
RUN di spl ay(numtl, SI N(nuni))
RUN di spl ay(nun2, COS(nun®))

PRI NT
UNTIL numt > 1
END

PROCEDURE di spl ay
PARAM passed, f uncval

PRI NT passed;":"; funcval,
passed : = passed + 0.1
END

KILL Statement

Syntax:

KILL str expr

This statement is used to “unlink” an external procedure, possibly returning system memory, and
remove it from BASICQ09's procedure directory. If the procedure is inside the workspace, nothing
happens and no error is generated. KILL can be used with auto-loading PACKed procedures as an
alternative to CHAIN when program overlay is desired.

Warning
1. It can befatal to OS-9 to KILL aprocedure that is till “active”.

2. When KILL isused together withaRUN statement, the RUN statement must use the same
string variable which contains the name of the procedure. See the first example below:

Examples:

LET procnane$="aver age"
RUN pr ocnane$
KILL procnane$

| NPUT "Which test do you want to run? ",test$
RUN test$
KILL test$

CHAIN Statement

Syntax:

CHAI N str expr

48

SHELL Statement

The CHAIN statement performsan OS-9 “chain” operation onthe SHELL, passing the specified string
as an argument. This causes BASICO09 to be exited, unlinked, and its memory returned to OS-9. The
string should evaluate to the name of an executable module (such as BASIC09), passing parameters
if appropriate.

CHAIN can begin execution of any module, not just BASICO09. It executes the module indirectly
through the Shell in order to take advantage of Shell's parameter processing. This has the side-effect
of leaving an extra “incarnation” of the Shell active. Programs that repeatedly chain to each other
eventually find all of memory filled with waiting shells. Thiscan be prevented by using the“ex” option
of the Shell. Consult the OS-9 User's Guide for more details on the capabilities of the shell.

Files that are open when a CHAIN occurs are not closed. However, the OS-9 Fork call will only pass
the standard 1/0 paths (0,1,2) to a child process. Therefore, if it is necessary to pass an open path to
another program segment, the “ex” option of Shell must be used.

Examples:

CHAI N "ex BASI C09 nenu"
CHAI N "BASI C09 #10k sort (""datafile"",""tenpfile"")"
CHAIN "DI R / DO"

CHAIN "Dir; Echo *** Copying Directory ***; ex basic09 copydir"

SHELL Statement
Syntax:

SHELL str expr

This statement allows BASICQ9 programsto run any OS-9 command or program. This gives accessto
virtually any OS-9 function including multiprogramming, utility commands, terminal, and I/O control,
and more. Consult the OS-9 User's Guide for a detailed discussion of OS-9 standard commands.

The SHELL statement requests OS-9 to create a new process, initially executing the “shell”, which
is the OS-9 command interpreter. The shell can then call any program in the system (subject to the
normal security functions). The string expression is evaluated and passed to the shell to be executed
as a command line. (just as if it had been typed in). If the string is null, BASICO9 is temporarily
suspended and the shell process displays prompts and accepts commandsin its normal manner. When
the shell process terminates, BASIC09 becomes active again and resumes execution at the statement
following the SHELL statement.

Here are afew examples of using the shell from BASICO09:

SHELL "copy filel file2" sequenti al execution
SHELL "copy filel file2&" concurrent execution
SHELL "edit docunent™ calling text editor

SHELL "asm source o=obj ! spool &' concurrent assenbly

N: =5
SHELL "kill "+STR$(N)

49

END Statement

file$:= "/dl/ batch_j obs" concurrent execution of a

SHELL file$ + " -p >/p & batch procedure file
END Statement

Syntax:

END [out put list]

This statement ends execution of the procedure and returns to the calling procedure, or to BASIC09
command mode if it was the highest level procedure. If an output list is given, it also works the same
asthe PRINT statement. END is an executable statement and can be used several times in the same
procedure. END isoptional: it is not required at the “bottom” of a procedure.

Examples:

END

END "1 have fini shed execution"

STOP Statement
Syntax:

STOP [output |ist]

This statement immediately terminates execution of all procedures and returns to the command mode.
If an output list isgiven it also works like a PRINT statement.

BYE Statement
Syntax:

BYE
This statement ends execution of the procedure and terminates BASIC09. Any open files are closed,

and any unsaved procedures or data in the workspace will be lost. This command is especially useful
for creating PACKed programs and/or programs to be called from OS-9 procedure files.

Warning

This command causes BASICO09 to abort. It should only be used if the program has been
saved before it is tested!

ERROR Statement
Syntax:

ERROR(i nt eger expr)

This statement generates an error having the error code specified by the result of evaluation of the
expression. ERROR is often used for testing error routines. For details on error handling see the ON
ERROR GOTO statement description.

50

PAUSE Statement

PAUSE Statement
Syntax:

PAUSE [out put |ist]

PAUSE suspends execution of the procedure and causes BASICQ9 to enter Debug Mode. If an output
listisgivenit aso workslike a PRINT statement.

out put BREAK | N PROCEDURE procedure nane

The Debug Mode “CONT” command can be used to resume procedure execution at the following
Statement.

Examples:

PAUSE

PAUSE "now out si de nain | oop"

CHD and CHX Statements
Syntax:

CHD str expr
CHX str expr

These statements change the current default Dataor Execution directory, respectively. The string must
specify the pathlist of afile which has the DIR attribute. For more information on the OS-9 directory
structure, consult the OS-9 User's Guide.

DEG and RAD Statements

Syntax:

DEG
RAD

These statements set the procedure's state flag to assume angles stated in degrees or radiansin SIN,
COS, TAN, ACS, ASN, and ATN functions. This flag applies only to the currently active procedure.
The default state is radians.

BASE 0 and BASE 1 Statements
Syntax:

BASE 0
BASE 1

These statements indicate whether a particular procedure's lowest array or data structure index
(subscript) iszero or one. The default is one. These statements do not affect the string operations (e.g.,
MID$, RIGHT$, OR LEFT$) where the beginning character of astring is alwaysindex one.

51

TRON and TROFF Statements

TRON and TROFF Statements

Syntax:

TRON
TROFF

These statements turn the trace mode on or off, and are useful for debugging. When trace mode
is turned on, each statement is decompiled and printed before execution. Also, the result of each
expression evaluation is printed as it occurs.

Comment Statements

Syntax:
REM char s
(* chars [*)]

These statements are used to put comments in programs. The second form of the statement is for
compatibility with PASCAL programs. Comments are retained in the I-code but are removed by the
PACK compile command. The“!” character can be typed in place of the keyword REM when editing
programs. The compiler trims away extra spaces following REM to conserve memory space.

Examples:

REM this is a comrent
(* This is also a coment *)

(* This is another kind of comrent

Declarative Statements

The DIM, PARAM, and TY PE statements are called declarative statements because they are used to
defineand/or declare variables, arrays, and complex datastructures. The DIM and PARAM statements
are almost identical, the difference being that DIM are used to declare storage used exclusively within
the procedure, and the PARAM statement is used to declare variables received from another calling
procedure.

When do you need to use the DIM statement? Y ou don't need to for simple variables of type REAL
because this is the default format for undeclared variables. You also don't need to for 32-character
STRING type variables (any nameending witha“$” isautomatically assigned thistype). Even though
you don't have to declare variables in these two cases, you may want to anyway to improve your
program'sinternal documentation. Those things you must declare are:

1. Any simple variables of type BY TE, INTEGER, or BOOLEAN.

2. Any simple STRING variables shorter or longer than 32 characters.
3. Arrays of any type.

4. Complex data structures of any type.

The TYPE statement does not really create variable storage. Its purpose is to describe a new data
structure type that can be used in DIM or PARAM statementsin addition to the five atomic datatypes
built-in to BASIC09. Therefore, TYPE is only used in programs that use complex data structures.

52

DIM Statement

DIM Statement
Syntax:

DI M decl seq {; decl seq}

decl seq := decl {, decl} [: type]

decl := name [subscript]

subscr := (const [,const [,const]])

type := BYTE | |INTEGER | REAL | BOCLEAN
STRING | STRING max len | user defined type
user def := user defined by TYPE statenent

The DIM statement is used to declare simple variables, arrays, or complex data structures of the five

atomic types or any user-defined type. During compilation, BASICQ9 assigns storage required for all
variables declared in DIM statements.

Declaring Simple Variables

Simple variables are declared by using the variable name in aDIM statement without a subscript. If
variablesarenot explicitly declared, they are automatically assumed to be REAL, or type STRING[32]
if the variable name ends with a“$” character. Therefore all simple variables of other types must be
explicitly declared. For example:

DI M | ogi cal : BOOLEAN

Severa variables can be declared in sequence with a:t ype following a group of the same type:

DI M a, b,c: STRING

In addition, several different types can be declared in asingle DIM statement by using a semicolon
“:" to separate different types:

DIM a, b, c: I NTECER, n, mdeci mal; Xx,y, z: BOOLEAN

In this example a, b, and ¢ are type INTEGER, n and m are type “decimal” (a user-defined type),
and X, y, and z are type BOOLEAN. String variables are declared the same way except an optional
maximum string length can be specified. If alength isnot explicitly given, 32 characters are assumed:

DI M nane: STRI NG 40]; address,city: STRING zip: REAL

In this case, “name” is a string variable of 40 characters maximum, “address’ and “city” are string
variables of 32 characters each, and “zip” isared variable.

Array Declarations

Arrays can have one, two, or three dimensions. The DIM statement format (including type grouping)
is the same as for simple variables except each name is followed by subscript(s) to indicate its size.
The maximum subscript size is 32767. Simple variable and array declarations can be mixed in the
same DIM statement:

DI M a(10), b(20, 30), c: | NTEGER, x(5, 5, 5): STRI Ng 12]

In the example above, “a’ is an array of 10 integers, “b” is a 20 by 30 matrix of integers, “c” isa
simple integer variable, and “Xx” is athree-dimensional array of 12-character strings.

53

PARAM Statement

Arrays can be any atomic or user-defined type. By declaring arrays of user-defined types, structures
of arbitrary complexity and shape can be generated. Here's an example declaration that generates a
doubly-linked list of character strings. Each element of the array consists of the string containing the
data and two integer “pointers’.

TYPE |ink_pointers = fwd, back: | NTEGER
TYPE el ement = data: STRING 64]; ptr: link _pointers
DIM1ist(100): el enent

(* make a circular list *)

BASEO

FOR index := 0 TO 99
list(index).data := "secret nessage " + STR$(i ndex)
list(index).ptr.fwd := index+1
list(index).ptr.back := index-1

NEXT i ndex

(* fix the ends *)

list(0).ptr.back :

[ist(99).ptr.fwd :

99
0

(* Print the list *)
i ndex=0
REPEAT
PRI NT |ist(index).data
i ndex := list(index).ptr.fwd
UNTIL index=0
END

PARAM Statement

Syntax: Same as DIM statement

PARAM isidentical tothe DIM statement, but it does not create variable storage. Instead, it describes
what parameters the “called” procedure expects to receive from the “calling” procedure.

The programmer must insure that the total size of each parameter (as evaluated by the RUN statement
in the calling procedure) conforms to the amount of storage expected for each parameter in the called
procedure as specified by the PARAM statement. BASICO09 checks the size of each parameter (to
prevent accidental access to storage other than the parameter) but does not check type. However, in
most cases the programmer should ensure that the parameters evaluated in the RUN statement and
sent to the called procedure agree exactly with the PARAM statement specification with respect to:
the number of parameters, their order, size, shape, and type.

Because type-checking is not performed, if you really know what you are doing you can make the
parameter passing operation perform useful but normally illegal type conversions of identically-sized
data structures. For example, passing a string of 80 charactersto a procedure expecting aBY TE array
having 80 elements assigns the numeric value of each character in the string to the corresponding
element of the byte array.

TYPE Statement

Syntax:

TYPE type decl {; type decl}
type decl := field name . decl : type}
decl := name [, subscript]

TY PE Statement

subscript := (const [,const [,const]])

type := BYTE | INTEGER | REAL | BOCLEAN |
STRING | STRING [nmax len] | user defined

user defined := user defined by TYPE statenent

This statement is used to define new data types. New data types are defined as a “vector” (a one-
dimensiona array) of previously defined types. This structure differs from an array in that the various
elements may be of different types, and the elements are accessed by field name instead of an array
index. Here's an example:

TYPE cust _recd : = nane, address(3): STRING bal ance

This example creates a new data type called “cust_recd” which has three named fields: afield called
“name” which isastring, afield called “address’” which is avector of three strings; and afield called
“balance” which is a (default) REAL value.

The TYPE statement can include previously-defined types so very complex non-rectangular data
structures can be created such as lists, trees, etc. This statement does not create any variable storage
itself; the storage is created when the newly-defined type is used in a DIM statement. The example
show below creates an array having 250 elements of type “cust_recd” that was defined above:

DI M customer _fil e(250): cust_recd

To access elements of the array in assignment statements, the field name is used as well as the index:

name$ = customer_fil e(35). nane
customer _file(N+1).address(3) = "New York, NY"
custoner _file(X).balance= 125.98

The complex structure allows creation of data types appropriate to the job at hand by providing more
natural organization and association of data. Additionally, the position of the desired element isknown
and defined at compilation-time and need not be cal culated at runtime, unlike arrays, and can therefore
be accessed faster than arrays.

55

56

Input and Output Operations
Files and Unified Input/Output

A fileisalogical concept for a sequence of data which is saved for convenience in use and storage.
File data may be pure binary data, textual data (ASCII characters), or any other useful information.
Hardware input/output (“1/0”) devices used by OS-9 also work like files, so you can generally use
any 1/0 facility regardless of whether you are working with disk files or 1/0O devices such as printers.
This single interface standard for any device and simple communication facilities allow any device
to be used with any other device. This concept is known as “unified I/O”. Note that unified 1/O can
benefit routine programming. For example: file operations can be debugged by communicating with
aterminal or printer instead of a storage device, and procedures which normally communicate with a
terminal can be tested with data coming from and sent to a storage device.

BASIC09 normally works with two types of files: sequential files and random-access files.

A sequentia file sends or receives (WRITE/READ) textual data only in order. It is not generaly
possible to start over at the beginning of a sequential file once a number of bytes have been accessed
(many 1/0O devices such as printers are necessarily sequential). A sequentia file contains only valid
ASCII characters; the READ and WRITE commands perform format conversion similar to that done
automatically in INPUT and PRINT commands. A sequential file contains record-delimiter characters
(carriage return) which separate the data created by different WRITE operations. Each WRITE
command will send a complete sequential-file record, which is an arbitrary number of characters
terminated by a carriage return. Each READ reads all characters up to the next carriage return.

A random-access file sends and receives (PUT/GET) data in binary form exactly as it is internaly
represented in BASICQ9. This minimizes both the time involved in converting the data to and from
ASCII representation, as well as reducing the file space required to store the data. It is possible to
PUT and GET individual bytes, or a substructure of many bytes (in a complex structure). The GET
structure statement merely recovers the number of bytes associated with that type of structure. It is
possible to move to a particular byte in a random-access file (using SEEK) and to begin to PUT or
GET sequentially from that point (in general, “SEEK #path,0” is equivalent to the REWIND used in
someformsof BASIC). Sincethe random-accessfile contains no record-separatorsto indicate the size
of particular elements of the file, the programmer should use the SIZE function to determine the size
of asingle element, then use SEEK to move to the desired element within the file.

A new fileismade on astorage device by executing CREATE. Once afile exists, the OPEN command
is used to notify the operating system to set up a channel to the desired device and return that path
number to the BASICO09 program. This channel number is then used in file-access operations (e.g.,
READ, WRITE, GET, PUT, SEEK, etc.). When the programmer is finished with thefile, it should be
terminated by CLOSE to assure that the file system has updated all data back onto magnetic media.

/O Paths

A “path” is adescription of a“channel” through which data flows from a given program outward or
from some device inward. In order for data to flow to or from a device, there must be an associated
0S-9 device driver — see the O9 User's Manual. When a path is created, OS-9 returns a unique
number to identify the path in subsequent file operations. This “path number” is used by the I/O
statements to specify the file to be used. Three path numbers have specia meanings because they
are “standard 1/0O paths’ representing BASIC09's interactive input/output (your terminal). These are
automatically “opened” for you and should not be closed except in very specia circumstances. The
standard 1/0O path numbers are:

0 Standard Input (Keyboard)
1 Standard Output (Display)

57

INPUT Statement

2 Standard Error/Status (Display)

The table below is a summary of the 1/0O statements within BASIC09 and their general usage. This
reflects typical usage; most statements can be used with any 1/O device or file. Sometimes certain
statements are used in unusual ways by advanced programmers to achieve certain special effects.

Statement Generally Used With Data Format (File Type)
INPUT Keyboard (interactive input) Text (Sequential)
PRINT Terminals, Printers Text (Sequential)
OPEN Disk Filesand I/O Devices Any

CREATE Disk Filesand 1/0O Devices Any

CLOSE Disk Filesand 1/0O Devices Any

DELETE Disk Files Any

SEEK Disk Files Binary (Random)
READ Disk Files Text (Sequential)
WRITE Disk Files Text (Sequential)
GET Disk Filesand 1/0O Devices Binary (Random)
PUT Disk Filesand 1/0O Devices Binary (Random)

INPUT Statement

Syntax:

| NPUT [#int expr,] ["pronpt",] input |ist

This statement accepts input during the execution of a program. The input is normally read from the
standard input device (terminal) unless an optional path number is given. When the INPUT statement
is encountered, program execution is suspended and a“?” prompt is displayed. If the optional prompt
string isgiven, it isdisplayed instead of the normal “?’ prompt. This meansthat the INPUT statement
isreally both an input and output statement. Therefore, if a path other than the default standard input
path is used, the path should be open in UPDATE mode. This makes INPUT dangerous if used on
disk files, unless you like prompts in your data (use READ).

Thedataentered isassigned in order to the variable namesin the order they appear intheinput list. The
variables can be of any atomic type, and the input data must be of the same (or compatible) type. The
lineis terminated by a carriage return. There must be at least as many input items given as variables
in theinput list. The length of the input line cannot exceed 256 characters.

If any error occurs (type mismatch, insufficient amount of data, etc.), the message:

| NPUT ERROR - RETYPE

is displayed, followed by anew prompt. The entire input line must then be reentered.

The INPUT statement uses OS-9's line input function (READLN) which performs line editing such
as backspace, delete, end-of-file, etc. To perform input WITHOUT editing (i.e., to read pure binary
data), use the GET statement.

Examples:

| NPUT nunber, nane$, | ocati on

I NPUT #14, "What is your selection", choice

58

PRINT Statement

I NPUT "What's your nanme? ", name$

Here's how to read a single character (without editing) from the terminal (path #0):

DI M char: STRI N 1]
CGET #0, char

For afunction to test if data is available from the keyboard without “hanging” the program, see the
“INKEY" assembly language program included in Appendix A, Sample Programs.

PRINT Statement
Syntax:

PRI NT out put |i st

PRI NT #int expr, output |ist

PRI NT USI NG str expr, output |ist

PRI NT #int expr, USING str expr, output list

This statement outputs the values of the items given in the output list to the standard output device
(path #1, the terminal) unless another path number is specified.

The output list consists of one or more items separated by commas or semicolon characters. Each
item can be a constant, variable, or expression of any atomic type. The PRINT statement evaluates
each item and converts the result to corresponding ASCII characters which are then displayed. If the
separator character following the item is a semicolon, the next item will be displayed without any
spacing in between. If acommais used, spaces are output so the next item starts at the next “tab” zone.
The tab zones are 16 characters long starting at the beginning of the line. If the line is terminated by
asemicolon, the usual carriage return following the output line is inhibited.

The“TAB(expr)" function can be used asan item in the output list, which outputsthe correct number
of spacesto cause the next item to start in the print column specified by the result of the expression. If
the output lineis already past the desired tab position, the TAB isignored. A related function, “POS”,
can be used in the program to determine the output position at any given time. The output columns
are numbered from one to amaximum of 255. The size of BASIC09's output buffer varies according
to stack size at the moment. A practical valueis at least 512 characters.

The PRINT USING form of this statement is described at the end of this chapter.

Examples:

PRI NT val ue, tenp+(n/2.5), 1 ocati on$

PRI NT #printer_path,"The result is "; n

PRINT "what is " + name$ + "'s age? ";

PRI NT "index: ";i;TAB(25);"value: ";value

PRI NT USI NG "R10. 2, X2, R5. 3", X,y

PRI NT #out path USING fnt$, count, val ue

(* print an 80-character line of all dashes *)

REPEAT
PRI NT "-";

59

OPEN Statement

UNTI L PCS >= 80
PRI NT

OPEN Statement

Syntax:

OPEN #int var,"str expr" [: access node]
access node := node ! npbde + access node
node := READ! WRITE ! UPDATE ! EXEC ! DR

This statement issues arequest to OS-9 to open an 1/O path to an existing file or device. The STRING
expression is evaluated and passed to OS-9 as the descriptive pathlist. The variable name specified
must be DIMensioned astype INTEGER or BY TE and isused “receive’ the “path number” assigned
to the path by OS-9. This path number is used to reference the specific file/device in subsequent input/
output statements.

The OPEN statement may al so specify the path's desired “ access mode” which can be READ, WRITE,
UPDATE, EXEC, or DIR. This defines which direction 1/0 transfers will occur. If no access mode
is specified, UPDATE is assumed and both reading and writing are permitted. The DIR mode allows
0S-9 directory type-files to be accessed but should not be used in combination with WRITE or
UPDATE modes. The EXEC mode causes the current execution directory to be used instead of the
current datadirectory. Refer to the OS9 User's Guide for moreinformation on how files access modes.

Examples:

DI M printer_path: BYTE;, name: STRI NF 24]
nane="/p"

OPEN #pri nter_path, name: WRI TE

PRI NT #printer_path,"Mary had a little |anmb"
CLOSE #printer_path

DI M i npat h: | NTEGER

dev$="/wi nchester/"

| NPUT nane$

OPEN #i npat h, dev$+name$: READ
OPEN #pat h: userdi r $: READ+DI R

OPEN #pat h, nane$: WRI TE+EXEC

CREATE Statement

Syntax:

CREATE #int var,"str expr" [: access node]
access node := npde ! npde + access npde
node := WRITE ! UPDATE ! EXEC

The CREATE statement is used to create a new file on amultifile mass storage device such as disk or
tape. If thedeviceisnot of multifiletype, thisstatement workslikean“ OPEN” statement. Thevariable
name is used to receive the path number assigned by OS-9 and must be of BY TE or INTEGER type.
The STRING expression is evaluated and passed to OS-9 to be used as the descriptive pathlist.

The “access mode” defines the direction of subsequent 1/0O transfers and should be either WRITE or
UPDATE. “UPDATE" mode alows the file to be either read or written.

60

CLOSE Statement

0S-9 has a single file type that can be accessed both sequentially OR at random. Files are byte-
addressed, so no explicit “record” length need be given (see GET and PUT statements). When a new
fileis created, it has an initial length of zero. Files are expanded automatically by PRINT, WRITE,
or PUT statements that write beyond the current “end of file”. File size may be set explicitly using
the OS9 statement.

Examples:

CREATE #trans, "transacti ons": UPDATE
CREATE #spool , "/ user4/report": WRI TE

CREATE #out pat h, nane$: UPDATE+EXEC

CLOSE Statement

Syntax:

CLCSE #int expr {,#i nt expr}

The CLOSE statement notifies OS-9 that one or more 1/O paths are no longer needed. The paths are
specified by their number(s). If the path closed used a non-sharable device (such as a printer), the
deviceisreleased and can be assigned to another user. The path must have been previously established
by means of the OPEN or CREATE statements.

Paths#0, #1, and #2 (the standard 1/0 paths) should never be closed unlessthe user immediately opens
anew path to take over the Standard Path number.

Examples:

CLOSE #nmst er, #t rans, #new_nast er
CLOSE #5, #6, #9

CLCSE #1 \(* closes standard output path *)
OPEN #path, "/ T1" \'(* Permanently redirects Std Qutput *)

CLCSE #0 \'(* closes standard i nput path *)
OPEN #path, "/ TERM' \(* Permanently redirects Std | nput *)

DELETE Statement

Syntax:

DELETE str expr

This statement is used to delete a mass storage file. The file's name is removed from the directory
and all its storage is deallocated, so any data on the file is permanently lost. The string expression is
evaluated and passed to OS-9 as the descriptive pathlist of thefile.

The user must have write permission for the file to be deleted. See the OS-9 User's Guide for more
information.

Examples:

61

SEEK Statement

DELETE "/ D0/ ol d_j unk"

nane$="fil e55"
DELETE nane$
DELETE "/ D2/ " +name$ (deletes file naned "/D2/fil e55")

SEEK Statement

Syntax:

SEEK #int expr numreal expr

SEEK changes the file pointer address of a mass storage file, which is the address of the next data
byte(s) that are to be read or written next. Therefore, this statement is essential for random access of
data on files using the GET and PUT statements.

Thefirst expression specifiesthe path number of the file and must evaluate to abyte value. The second
expression specifies the desired file pointer address, and must evaluate to a REAL value in the range
0 <= result <= 2,147,483,648. Any fractional part of the result is truncated. Of course, the actual
maximum file size depends on the capacity of the device.

Although SEEK isnormally used with random-accessfiles, it can be used to “rewind” sequential files.
For example:
SEEK #path, 0

isthe same as a“rewind” or “restore” function. Thisisthe only form of the SEEK statement that is
generaly useful for files accessed by READ and WRITE statements. These statements use variable-
length records, so it is difficult to know the address of any particular record in the file.

Examples:

SEEK #fil eone, filptr*2
SEEK #outfil e, 208894

SEEK #i nventory, (part_num - 1) * SIZE(inv_rcd)

WRITE Statement

Syntax:

WRI TE #i nt expr, output |ist

This statement writes data in ASCII character format on afile/device. The first expression specifies
the number of a path that was previously opened by a OPEN or CREATE statement in WRITE or
UPDATE mode.

Theoutput list consists of one or more expressions separated by commas. Each expression can evaluate
to any expression type. The result is then converted to an ASCII character string and written on the
specified path beginning at the present file pointer which is updated as data is written.

If the output list has more than one item, ASCII null characters ($00) are written between each output
string. The last item is followed by a carriage return character.

Note that this statement creates variable-length ASCII records.

62

READ Statement

Examples:

VRI TE #out pat h, cat, dog, nouse

WRI TE #xfil e, LEFT$(AS$, n), count/2

READ Statement
Syntax:

READ #i nt expr numinput |i st

This statement causes input datain ASCII character format to be read from afile or device. Thefirst
expression specifies a path number. The path number which must have been previously opened by an
OPEN or CREATE statement in READ or UPDATE access mode (except the standard input path #0).
Dataisread starting at the path's current file pointer address which is updated as datais read.

This statement calls OS-9 to read a variable length ASCII record. Individual data items within the
record are converted to BASICQ9's internal binary format. These results are assigned in order to the
variables given in the input list. The input data must match the number and type of the variablesin
theinput list.

The individual dataitemsin the input record are separated by ASCII null characters. Numeric items
can aso be delimited by commas or space characters. The input record is terminated by a carriage
return character.

Examples:

READ #i npat h, nane$, address$, city$, state$, zip

PRI NT #1, "hei ght, weight? "
READ #0, hei ght, wei ght

Note

READ is also used to read lists of expressions in the program. See the DATA statement
section for details.

GET/PUT Statement
Syntax:

CET #expr, struct name
PUT #expr, struct nane

The GET and PUT statements read and write fixed-size binary data records to files or devices. These
are the primary 1/0 statements used for random access input and output.

Thefirst expression is evaluated and used as the number of the I/O path which must have previously
been opened by an OPEN or CREATE statement. Paths used by PUT statements must have been
opened in WRITE or UPDATE access modes, and paths used by GET statements must be in READ
or UPDATE mode.

The statement uses exactly one name which can be the name of a variable, array, or complex data
structure. Datais written from, or read into, the variable or structure named. The dataistransferred in

63

GET/PUT Statement

BASIC09's internal binary format without conversion which affords very high throughput compared
to READ and WRITE statements. Data is transferred beginning at the current position of the path's
file pointer (see SEEK statement) which is automatically updated.

0S-9's file system does not inherently impose record structures on random-access files. All files are
considered to be continuous sequences of addressable binary bytes. A byte or group of bytes located
anywhere in the file can be read or written in any order. Therefore the programmer is free to use the
basic file access system to create any record structure desired.

Record 1/0in BASICO09 is associated with data structures defined by DIM and TY PE statements. The
GET and PUT statements write entire data structures or parts of data structures. A PUT statement, for
example, can write a simple variable, an entire array, or a complex data structure in one operation.
To illustrate how this works, here is an example based on a simple inventory system that requires
a random access file having 100 records. Each record must include the following information: the
name of the item (a 25-byte character string), the item's list price and cost (both real nhumbers), and
the quantity on hand (an integer).

First it is necessary to use the TY PE statement to define a new data type that describes such arecord.
For example:

TYPE inv_itenrname: STRING 25] ;i st, cost: REAL; qty: | NTEGER

This statement describes a new record type called “inv_item” but does not cause variable storage to
be assigned for it. The next step is to create two data structures: an array of 100 “records’ of type
“inv_item” to be called “inv_array” and a single working record called “work_rec”:

DIMinv_array(100):inv_item
DIMwork rec:inv_item

You can manually count the number of bytes assigned for each type to calculate the total size of
each record. Sometimes these can become complicated and error-prone. Also, any changeinaTYPE
definition could require recalculation. Fortunately, BASIC09 has a built-in function:

SI ZE(nane)

that returns the number of bytes assigned to any variable, array, or complex data structure. In our
example, SIZE(work_rec) will return the number 37, and SIZE(inv_array) will return 3700. The size
function is often used in conjunction with the SEEK statement to position afile pointer to a specific
record's address.

The procedure below creates afile called “inventory” and initializes it with zeroes and nulls:

PROCEDURE nakefil e
TYPE inv_item = name: STRINJ 25]; |ist,cost: REAL; qty: | NTEGER
DIMinv_array(100):inv_item
DIMwork rec:inv_item
DI M pat h: byt e
CREATE #pat h, "i nventory"
work rec.name = ""
work rec.|list 0.
wor k_rec. cost 0.
work rec.qty := 0
FOR n =1 TO 100
PUT #pat h, work_rec
NEXT n
END

Internal Data Statements

Notice that the assignment statements referenced each named “field” of work_rec by name, but PUT
referenced the record as awhole.

The subroutine below asks for a record number, then asks for data, and writes it in the file at the
specified record:

| NPUT "Record nunber ?",recnum

I NPUT "Item name? ", work_rec. nane

I NPUT "List price? ",work rec.|list

| NPUT "Cost price? ",wrk _rec.cost

I NPUT "Quantity? ",work rec.qty

SEEK #path, (recnum- 1) * SIZE(work_rec)
PUT #pat h, work_rec

This routine below uses aloop to read the entire file into the array “inv_array”:

SEEK #path,0 \ (* "rewind" the file *)
FOR k = 1 TO 100

GET #pat h, inv_array(k)
NEXT k

Because ENTIRE STRUCTURES can be read, we can eliminate the FOR/NEXT loop and do exactly
the same thing by:

SEEK #pat h, 0

CGET #path,inv_array

The above exampleisavery simple case, but it illustrates the combined power of BASIC09 complex
data structures and the random access 1/0 statements. When fully exploited, this system has the
following important characteristics:

1. It is self-documenting. You can clearly see what a program does because structures have
descriptive, named sub-structures.

2. Itisextremely fast.

3. Programs are simplified and require fewer statements to perform /O functions than in other
BASICs.

4. Itisversdtile. By creating appropriate data structures you can read or write almost any kind of data
in any file, including files created by other programs or languages.

These advantages are possible because asingle GET or PUT statement can move any amount of data,
organized any way you want.

Internal Data Statements
DATA/READ/RESTORE Statements

Syntax:

READ i nput i st
DATA expr, {expr}
RESTORE [|ine number]

65

Formatted Output: The
Print Using Statement

These statements provide an efficient way to build constant tableswithin aprogram. DATA statements
provide values, the READ statement assign the values to variables, and RESTORE statements can be
used to set which data statement is to be read next.

The DATA statements have one or more expressions separated by commas. They can be located
anywhere in aprogram. The expressions are evaluated each time the data statements are read and can
evaluate to any type. Here are some examples:

DATA 1.1, 1.5, 9999, " CAT", " DOG'
DATA SI N(tenp/ 25), COS(tenp*Pl)
DATA TRUE, FALSE, TRUE, TRUE, FALSE

The READ statement has a list of one or more variable names. When executed, it gets “input” by
evaluating the current expression in the current data statement. The result must match the type of
the variable. When all the expressions in a DATA statement have been evaluated, the next DATA
statement (in sequential order) is used. If there are no more DATA statements following, processing
“wraps around” to the first data statement in the program.

The RESTORE statement used without aline number causesthefirst DATA statement in the program
to beused next. If it isused with aline number, the data statement having that line number isused next.

Examples:

DATA 1,2, 3,4

DATA 5,6,7,8
100 DATA 9, 10, 11, 12

FORN:= 1 TO X

READ ARRAY(N)

NEXT N

RESTORE 100

READ A B, C D

Formatted Output: The Print Using Statement

BASICO09 has a powerful output editing capability useful for report generation and other applications
where formatted output is required. The output editing uses the PRINT USING statement which has
the following syntax:

PRI NT [expr#,] USING str expr , output |ist

The optiona path number expression can be used to specify the path number of any output file or
device. If it is omitted, the output is written to the standard output path (usually the terminal).

The string expression is evaluated and used as a “format specification” which contains specific
formatting directives for each item in the “output list”. The items in the output list can be constants,
variables, or expressions of any atomic type. Blanks are not allowed in format strings! As each
output item is processed, it is matched up with a specification in the format list. The type of each
expression result must be compatible with the corresponding format specification. If there are fewer
format specifications than itemsin the output list, the format specification list is repeated again from
its beginning as many times as necessary.

A format string has one or more format specifications which are separated by commas. There are
two kinds of specifications: ones that control output editing of an item from the output list, and ones
that cause an output function by themselves (such as tabbing and spacing). There are six basic output
editing directives. Each has a corresponding one-letter identifier:

R real format

66

Real Format

E exponential format
I integer format

H hexadecimal format
S string format

B boolean format

Theidentifier letter isfollowed by a constant number called the “field width”. This number indicates
the exact number of print columns the output isto occupy and must allow for the data and “overhead”
character positions such as sign characters, decimal points, exponents, etc. Some formats have
additional mandatory or optional parameters that control subfields or select editing options. One of
these optionsis*justification” which specifies whether the output isto “line up” on the left, right side,
or center of the output field. Fields are commonly right-justified in reports because it arranges them
into neat columns with decimal points aligned in the same position.

The abbreviations and symbols used in the syntax specifications are:

w Total field width l1<=w<=255

f Fraction field l1<=w<=9

j OPTIONAL justification < (left) > (right) ~ (center)
Real Format

Syntax:

Rw. fj

This format can be used for numbers of types REAL, INTEGER, or BYTE. The total field width
specification must include two overhead positions for the sign and decimal point. The “f” specifies
how many fractional digits to the right of the decimal point are to be displayed. If the number has
more significant digitsthan thefield allowsfor, the undisplayed places are used to round the displayed
digits. For example:

PRI NT USING "R8.2", 12.349 gives 12. 35

The justification modes are:

< Leftjustify with leading sign and trailing spaces. (default if justification mode omitted)
> right justify with leading spaces and sign.
AN right justify with leading spaces and trailing sign (financial format)

Examples:

PRI NT USI NG "R8. 2<", 5678. 123 5678. 12

PRI NT USING "R8.2>",12.3 12. 30
PRI NT USI NG "R8. 2<",-555.9 -555. 90

PRI NT USI NG "10. 2", -6722. 4599 6722. 46-
PRI NT USI NG "R5. 1", "9999999" *okokok ok

Exponential Format
Syntax:

67

Integer Format

Ew. fj

Thisformat printsnumbersof typesREAL, INTEGER, or BY TE in the scientific notation format using
amantissaand decimal exponent. The syntax and behavior of thisformat issimilar tothe REAL format
except the“w” field width must allow for eight overhead positionsfor the mantissasign, decimal point,
and exponent characters. The “<” and “>" justification modes are allowed and work the same way.

Example:
PRI NT USI NG "E12. 3", 1234. 567 1. 235E+03
PRI NT USI NG "E12. 6>", -0. 001234 -1. 234000E- 3

Integer Format

Syntax:

I'wj

This format is used to display numbers of types INTEGER or BYTE, and REAL numbers that are
within range for automatic type conversion. The“w” field width must allow for one position overhead
for the sign. The justification modes are:

< leftjustify with leading sign and trailing spaces (default)
> right justify with leading spaces and sign
A right justify with leading spaces and zeroes

Example:

PRI NT USING "I 4<", 10 10

PRI NT USING "I4>",10 10
PRI NT USING "I 47", 10 010

Hexadecimal Format

Syntax:

|_M4'

This format can be used to display the internal binary representation of ANY data type, using
hexadecimal characters. The “w” field width specification determines the number of hexadecimal
charactersto output. Justification modes are:

< leftjustify with trailing spaces
> right justify, leading spaces
N center justify

Because the number of bytes of memory used to represent data varies according to type, the following
specification make the most sense for each data type:

H2 boolean, byte (one byte)

68

String Format

H4 integer (two bytes)
H10 rea (five bytes)
Hn*2 string of length n

Examples:

PRI NT USI NG "H4", 100 ooc4

PRI NT USING "H4", -1 FFFF

PRI NT USI NG "H10", 1.5 01D0000000
PRI NT USI NG "H8", " ABC' 414243

String Format

Syntax:

Swj
Thisformat is used to display string data of any length. The “w” field width specifies the total field

size. If the string to be displayed is shorter than thefield size, it is padded with spaces according to the
justification mode. If itistoo long, it will be truncated on theright side. The format specifications are:

< Leftjustify (default if mode omitted)
> right justify
N Center justify

Examples:

PRI NT USI NG " S8<", "HELLO' HELLO

PRI NT USI NG " S8>", "HELLO' HELLO
PRI NT USI NG "S8/2", "HELLO HELLO

Boolean Format
Syntax:

Bwj

Thisformat is used to display Boolean data. The result of the Boolean expression is converted to the
strings “TRUE” and “FALSE”. The specification is otherwise identical to the STRING format.

Control Specifications

Control specifications are useful for horizontal formatting of the output line. They are not matched
with itemsin the output list and can be used freely. The control formats are

Tn Tab to column n
Xn Space n columns

69

Repeat Groups

str' Include constant string. The string must not include single or double quotes, backslash or
carriage return characters.

Warning: Control specifications at the end of the format specification list will not be processed if all
output items have been exhausted.

Example

PRI NT USING "'addr', X2, H4, X2, ' data', X2, H2", 1000, 100 prints

addr O3E8 data 4

Repeat Groups

Many times identical sequences of specifications are repeated in format specification lists. The
repeated groups can be enclosed in parentheses and preceded by a repeat count. These repeat groups
can be nested. Here are some examples:

"2(X2,R10.5)" is the sane as "X2,R10.5, X2, R10. 5"

"2(12,2(X1,84))" is the sane as "2, X1, $4, X1, $4,12, X1, $4, X1, S4"

70

Program Optimization

General Execution Performance of BASIC09

The BASIC09 multipass compiler produces a compressed and optimized low-level “I-code” for
execution. Compared to other BASIC languages program storage is greatly decreased and execution
speed isincreased.

High-level language interpreters have a general reputation for slowness which is probably not
deserved. Because the BASICO9 |-codeis kept at a powerful level, asingle, fast I-code interpretation
will so that there is often result in many MPU instruction cycles (such as execution of floating-point
arithmetic operations). Thus, for complex programs there is little performance difference between
execution of I-code and straight machine-language instructions. This is generally not the case with
traditional BASIC interpreters that have to “compile” from text as they run or even “tokenized”
BASICs that must perform table-searching during execution. BASICO9 |-code instructions that
reference variable storage, statements, labels, etc., contain the actual memory addresses so no table
searching is ever required. Off course, BASICO9 fully exploits the power of the 6809'sinstruction set
which was optimized for efficient execution of compiler-produced code.

Because the BASICQ9 I-code is interpreted, a variety of entry-time tests and run-time tests and
development aids are available to help in program devel opment; aids not available on most compilers.
The editor reports errors immediately when they are entered, the debugger allows debugging using
the original program source statements and names, and the I-code interpreter performs run-time error
checking of things such as array bound errors, subroutine nesting, arithmetic errors, and other errors
that are not detected (and usually crash) native-compiler-generated code.

Optimum Use of Numeric Data Types

Because BASICO9 includes severa different numeric representations (i.e., REAL, INTEGER, and
BYTE) and does “automatic type conversions’ between them, it is easy to write expressions or
loops that take at least ten times longer to execute than is necessary. Some particular BASIC09
numeric operators (+, -, *, /) and control structures (FOR..NEXT) include versions for both REAL
and INTEGER vaues. The INTEGER versions, off course, are much faster and may have dlightly
different properties (e.g., INTEGER divides discard any remainder). Type conversions takes time so
expressions whose operands and operators are of the same type are more efficient.

BASIC09's REAL (floating point) math package provides excellent performance. A special 40-bit
binary floating point representation designed for speed and accuracy was developed especially for
BASICO09 after exhaustive research. The new CORDIC technique is used to derive all transcendental
functions (SIN, TAN, LOG, EXP, etc.). This integer shit-and-add technique is faster and more
consistently accurate than the commonly used series-expansion approximations.

Nonetheless, INTEGER operations are faster because they generally have corresponding 6809
machine-language instructions. Overall program speed will increase and storage reguirements will
decrease if INTEGERS are used whenever possible. INTEGER arithmetic operations use the same
symbols as REAL but BASIC09 automatically selects the INTEGER operations when working with
an integer-value result. Only if al operands of an expression are of types BY TE or INTEGER will
the result also be INTEGER.

Sometimes, similar or identical results can be obtained in a number of different ways at various
execution speeds. For example, if the variable “value’ is an integer, then “value*2” will be a fast
integer operation. However, if the expression is “value*2.0” the value “2.0” will be represented as a
REAL number, and the multiplication will be a REAL multiplication. This will also require that the
variable“value’ will haveto betransformed into aREAL value, and finally theresult of the expression
will haveto be transformed back to an INTEGER valueiif it isto be assigned to avariable of that type.
Thus asingle decimal point will slow this particular operation down by about ten times!

71

Looping Quickly

Table5. Arithmetic Functions Ranked by Speed

Operation Typical Speed (MPU Cycles)
INTEGER ADD OR SUBTRACT 150
INTEGER MULTIPLY 240
REAL ADD 440
REAL SUBTRACT 540
INTEGER DIVIDE 960
REAL MULTIPLY 990
REAL DIVIDE 3870
REAL SQUARE ROOT 7360
REAL LOGARITM OR EXPONENTIAL 20400
REAL SINE OR COSINE 32500
REAL POWER () 39200

This table can be used to deduce some interesting points. For example, “value*2” is not optimum
- “valuetvalue’ can produce the same result in less time because multiplication takes longer than
addition. Similarly, “vaue*value’ or “SQ(value)” is much faster than the equivalent “valuer2”.
Another interesting caseis“x/2.0". The REAL divide will cost 3870 cycles, but REAL multiplication
takes only 990 cycles. The mathematical equivalent to division by a constant is multiplication by the
inverse of the constant. Therefore, using “X*0.5” instead is almost four times faster!

Looping Quickly

When BASICO09 identifies a FOR..NEXT loop structure with an INTEGER loop counter variable, it
usesaspecia integer version of the FOR..NEXT loop. Thisismuch faster than the REAL -type version
and is generally preferable. Other kinds of loops aso run faster if INTEGER type variables are used
for loop counters.

When writing program loops, remember that statements inside the loop may be executed many times
for each single execution outside the loop. Thus, any value which can be computed before entering
aloop will increase program speed.

Optimum Use of Arrays and Data Structures

BASICO9 internally uses INTEGER numbers to index arrays and complex data structures. If the
program uses subscripts that are REAL type variables or expressions, BASICO09 has to convert them
to INTEGERS before they can be used. This takes additional time, so use INTEGER expressions for
subscripts whenever you can.

Note that the assignment statement (LET) can copy identically sized data structures. This feature is
much faster than copying arrays or structures element-by-element inside a loop.

The PACK Command

The PACK command produces a compressed version of a BASIC09 procedure. Depending on the
number of comments, line numbers, etc., programs will execute from 10% to 30% faster after being
packed. Minimizing use of line numbers will even speed up procedures that are unPACKed.

72

Eliminating Constant
Expressions and Sub-Expressions

Eliminating Constant Expressions and Sub-
Expressions

Fast

Consider the expression:

X = X+SQRT(100)/2

is exactly the same as the expression:

X = x+5

The subexpression “ SQRT(100)/2" consists of constants only, so its result will not vary regardless of
the rest of the program. But every time the program is run, the computer must evaluate it. This time
can be significant, especially if the statement iswithin aloop. Constant expressions or subexpressions
should be calculated by the programmer while writing the program (using DEBUG mode or a pocket
calculator).

Input and Output Functions

Reading or writing data a line or record at atime is much faster than a character at atime. Also, the
GET and PUT statements are much faster than READ and WRITE statements when dealing with disk
files. Thisisbecause GET and PUT use the exact binary format used internally by BASIC09. READ,
WRITE, PRINT, and INPUT must perform binary-to-ASCI| or ASCII-to-binary conversions which
take time.

Professional Programming Techniques

One sure way to make a program faster is to use the most efficient algorithms possible. There are
many good programming “cookbooks’ that explain useful agorithms with examples in BASIC or
PASCAL. Thanks to BASIC09's rich vocabulary you can use algorithms written in either language
with little or no adaptation.

BASICO09 also eliminates any possible excuse for not using good structured programming style
that produces efficient, reliable, readable, and maintainable software. BASICO09 generates optimized
code to be executed by the 6809 which is the most powerful 8-bit processor in existence at the
time of this writing. But a computer can only execute what it is told to execute, and no language
implementation can make up for an inefficient program. An inefficient program is evidence of alack
of understanding of the problem. The result is likely to be hard to understand and hard to update if
program specifications change (they always do). The identification of efficient algorithms and their
clear, structured expression isindicative of professionalism in software design and isagoal initself.

73

74

Appendix A. Sample Programs

PROCEDURE f i bonacc
REM conputes the first ten Fibonacci nunbers
DIMx,y,i,tenp: | NTEGER

x:=0 \y: =0
FOR i=0 TO 10
temp: =y

I F i <>0 THEN
y:=y+Xx

ELSE y: =1
ENDI F

X: =tenp
PRINT i,y
NEXT i

PROCEDURE fractions
REM by T.F. Ritter
REM fi nds increasingly-close rational approximtions
REM to the desired real value
DI M m | NTEGER

desired: =P
| ast: =0

FOR me1 TO 30000
n: =I NT(. 5+ntdesi red)
trial:=n/m
| F ABS(trial -desired)<ABS(I| ast - desired) THEN

PRINT n; "/"; m " =", trial
PRI NT "difference = "; trial-desired,
PRI NT
last:=trial
ENDI F
NEXT m

PROCEDURE pri nb
REM by T.F. Ritter
REM prints the integer paraneter value in binary
PARAM n: | NTEGER
DI Mi: | NTEGER

FOR i =15 TO 0 STEP -1
| F n<O THEN
PRI NT "1";
ELSE PRI NT "0";
ENDI F
n: =n+n
NEXT i
PRI NT

END

PROCEDURE hanoi
REM by T.F. Ritter
REM nmove n discs in Tower of Hanoi gane
REM See BYTE Magazi ne, Cct 1980, pg. 279

PARAM n: | NTEGER; fromto_, ot her: STRI N 8]

| F n=1 THEN

PRI NT "nove #"; n; " from"; from " to "; to_
ELSE

RUN hanoi (n-1,fromother,to_)

PRI NT "nove #"; n; " from"; from " to "; to_

RUN hanoi (n-1, ot her,to_,from
ENDI F

END

PROCEDURE r oman
REM prints integer paraneter as Roman Nuner al
PARAM x: | NTEGER
DI M val ue, sval u, i : | NTEGER
DI M char, subs: STRI NG

char: =" MDCLXVI "
subs: ="CCXXI'| "
DATA 1000, 100, 500, 100, 100, 10, 50, 10, 10,1,5,1,1,0

FOR i=1 TO 7
READ val ue
READ sval u

VWH LE x>=val ue DO
PRINT M D$(char,i,1);
X: =x-val ue

ENDVHI LE

| F x>=val ue-sval u THEN
PRI NT M D$(subs,i,1); MD$(char,i,1);
X: =x-val ue+sval u

ENDI F

NEXT i
END

PROCEDURE ei ght queens
REM originally by N. Wrth; here re-coded from Pascal
REM finds the arrangenents by which ei ght queens
REM can be placed on a chess board wi thout conflict
DI M n, k, x(8): | NTEGER
DI M col (8), up(15), down(15) : BOOLEAN
BASE 0

(* initialize enpty board *)
n: =0

FOR k: =0 TO 7 \col (k): =TRUE \ NEXT k

FOR k: =0 TO 14 \up(k): =TRUE \ down(k): =TRUE \ NEXT k
RUN gener at e(n, x, col , up, down)

END

PROCEDURE gener at e
PARAM n, x(8) : | NTEGER
PARAM col (8), up(15), down(15): BOOLEAN
DI M h, k: I NTEGER \ h: =0
BASE 0

REPEAT
I F col (h) AND up(n-h+7) AND down(n+h) THEN
(* set queen on square [n,h] *)
x(n):=h
col (h): =FALSE \up(n- h+7): =FALSE \ down(n+h) := FALSE
n: =n+l1
| F n=8 THEN
(* board full; print configuration *)
FOR k=0 TO 7
PRINT x(k); " ",
NEXT k
PRI NT
ELSE RUN gener at e(n, x, col, up, down)
ENDI F

(* renove queen from square [n, h] *)
n:=n-1
col (h): =TRUE \up(n-h+7): =TRUE \ down(n+h) : =TRUE
ENDI F
h: =h+1
UNTIL h=8
END

PROCEDURE el ectric
REM r e- programmed from " ELECTRI C'
REM by Dwyer and Critchfield
REM Basi ¢ and the Personal Computer (Addi son-Wesley, 1978)
REM provi des a pictorial representation of the
REM resul tant electrical field around charged points
DI M a(10), b(10), c(10)
DIM X, y,i,j: | NTEGER
xscal e: =50./78
yscal e: =50./ 32

| NPUT "How many charges do you have? ",n
PRINT "The field of viewis 0-50,0-50 (x,y)"
FOR i=1 TO n
PRINT "type in the x and y positions of charge ";
PRI NT i ;
I NPUT a(i),b(i)
NEXT
PRI NT "type in the size of each charge:™
FOR i=1 TO n
PRI NT "charge "; i;
I NPUT c(i)
NEXT

REM visit each screen position
FOR y=32 TO 0 STEP -1
FOR x=0 TO 78
REM compute field strength into v
GOSUB 10
z: =v*50.
REM map z to valid ASCII in b$
GOSsuUB 20
REM print char (proportional to field)
PRI NT b$;
NEXT x
PRI NT
NEXT y
END

10 v=1.
FOR i=1 TOn
r: =SQRT(SQ(xscal e*x-a(i))+SQyscal e*y-b(i)))
EXITIF r=.0 THEN
v: =99999.
ENDEXI T
v:=v+c(i)/r
NEXT
RETURN

20 | F z<32 THEN b$: =" "

ELSE
IF z>57 THEN z: =z+8
ENDI F
I F z>90 THEN b$: ="*"
ELSE

| F z>I NT(z)+.5 THEN b$: =" "
ELSE b$: =CHRS$(z)
ENDI F
ENDI F
ENDI F
RETURN

PROCEDURE st ruct st

REM exanpl e of interm xed array and record structures
REM note that structure d contains 200 real elenents

TYPE a=one(2): REAL
TYPE b=two(10):a
TYPE c=three(10):b
DM d, e:c

FOR i=1 TO 10
FOR j=1 TO 10

FOR k=1 TO 2
PRI NT d.three(i).two(j).one(k)
d.three(i).two(j).one(k):=0.
PRI NT e.three(i).two(j).one(k)
PRI NT

NEXT k

NEXT |
NEXT i

REMthis is a conplete structure assi gnnment
e:=d

FOR i=1 TO 10
FOR j=1 TO 10
FOR k=1 TO 2
PRINT e.three(i).two(j).one(k);
NEXT k
PRI NT
NEXT j
NEXT

END

PROCEDURE pi al ook
REM di splay PIA at address (T.F. Ritter)
REM made under st andabl e by K. Kapl an

DI M addr ess: | NTEGER

I NPUT "Enter PIA address: "; address
RUN si de(addr ess)

RUN si de(addr ess+2)

END

PRCCEDURE si de
REM di spl ay side of PIA at address
PARAM addr ess: | NTEGCER
DI M dat a: | NTEGER

(* loop until control register input strobe
(* flag (bit 7) is set

REPEAT \ UNTI L LAND(PEEK(address+1), $80) <> 0
(* now read the data register

dat a : = PEEK(address)

(* display data in binary

RUN pri nbyt e(dat a)

END

PROCEDURE pri nbyt e
REM print a byte as binary
PARAM n: | NTEGER

DIMi: | NTEGER
n: = n*256
FORi =7 TOO STEP -1

IF n <0 THEN PRINT "1";
ELSE PRI NT "0";
ENDI F
nN=n+1
NEXT

PRI NT
END

79

PROCEDURE gsort 1
REM qui cksort, by T.F. Ritter
PARAM bot , t op, d(1000) : | NTECER
DI M n, m | NTEGER; bt enp: BOOLEAN

n: =bot
m =t op

LOOP \REM each el ement gets the once over
REPEAT \REMthis is a post-inc instruction
bt enp: =d(n) <d(t op)
n: =n+l1
UNTI L NOT (btenp)
n:=n-1 \REM point at the tested el ement
EXI TI F n=m THEN
ENDEXI T

REPEAT \REMthis is a post-dec instruction
m=m1

UNTIL d(m<=d(top) OR men

EXI TI F n=m THEN

ENDEXI T

RUN exchange(d(nj),d(n))

n: =n+1 \ REM prepare for post-inc
EXI TI F n=m THEN

ENDEXI T

ENDL OOP

| F n<>top THEN
| F d(n)<>d(top) THEN
RUN exchange(d(n), d(top))
ENDI F
ENDI F

| F bot<n-1 THEN

RUN gsort1(bot, n-1,d)
ENDI F
| F ntl<top THEN

RUN gsort1(n+1, top, d)
ENDI F

END
PROCEDURE exchange

PARAM a, b: | NTEGCER
DI M tenp: | NTEGER

tenp: =a
a:=b
b: =t enp

END

PROCEDURE prin
PARAM n, m d(1000) : | NTEGER

DI M i : | NTEGCER

FOR i=n TO m
PRI NT d(i);

NEXT i

PRI NT

END

PROCEDURE sort est
REM This procedure is used to test Quicksort
REM It fills the array "d" with randomy generated
REM nunbers and sorts them
DM i, d(1000): I NTEGCER

FOR i =1 TO 1000
d(i): =1 NT(RND(100))
NEXT i

RUN prin(1, 1000, d)
RUN gsort1(1, 1000, d)
RUN prin(1, 1000, d)

END

The following procedures demonstrate multiple-precision arithmetic, in this case using five integers
to represent atwenty decimal digit number, with four fractional places.

PROCEDURE npadd
REM a+b=>c:five_integer _nunber (T.F. Ritter)
PARAM a(5), b(5), c(5): | NTEGER
DIMi,carry: | NTEGER

carry: =0
FOR i=5 TO 1 STEP -1
c(i):=a(i)+b(i)+carry
I F c(i)>=10000 THEN
c(i):=c(i)-10000
carry: =1
ELSE carry: =0
ENDI F
NEXT i

PROCEDURE npsub
PARAM a(5), b(5), c(5): | NTEGER
DI Mi, borrow | NTEGER

borrow. =0
FOR i=5 TO 1 STEP -1
c(i):=a(i)-b(i)-borrow
IF c(i)<0 THEN
c(i):=c(i)+10000
borrow =1
ELSE borrow. =0

81

ENDI F
NEXT i

PROCEDURE npr i nt
PARAM a(5) : | NTEGER
DIMi: I NTEGER, s:STRI NG

FOR i=1 TO 5

IF i=5 THEN PRINT ".";

ENDI F

s: =STR$(a(i))

PRI NT M D$("0000" +s, LEN(s) +1, 4);
NEXT i

PROCEDURE i nput
PARAM a(5) : | NTEGER
DI M n,i: | NTEGER

I NPUT "input ultra-precision nunber: ",b$
n: =SUBSTR(". ", b$)

I F n<>0 THEN
a(5): =VAL(M D$(b$+"0000", n+1, 4))
b$: =LEFT$(b$, n- 1)

ELSE a(5): =0

ENDI F

b$: =" 00000000000000000000" +b$
n: =1+LEN(b$)
FOR i=4 TO 1 STEP -1

n:=n-4

a(i):=VAL(M D$(b$, n, 4))
NEXT i

PROCEDURE npt or eal
PARAM a(5): | NTEGER, b: REAL
DI Mi: | NTEGER

b: =a(1)
FOR i=2 TO 4
b: =b*10000
b: =b+a(i)
NEXT i
b: =b+a(5) *. 0001

PROCEDURE Pat ch
(* Programto exam ne and patch any byte of a disk file *)
(* Witten by L. Crane *)
DI M buf f er (256) : BYTE
DI M pat h, of f set, nodl oc: | NTEGER, | oc: REAL
DM rewite: STRING
I NPUT "pathlist? ", rewite
OPEN #path, rewite: UPDATE

82

LOOP
I NPUT "sector nunber? ",rewite
EXITIF rewite="" THEN ENDEXI T
| oc=VAL(rewrite)*256
SEEK #pat h, | oc
CET #pat h, buffer
RUN DumpBuf f er (| oc, buffer)
LOOP
I NPUT "change (sector offset)? ", rewite
EXITIF rewite="" THEN
RUN DumpBuf f er (| oc, buffer)
ENDEXI T
EXITIF rewite="S" ORrewite="s" THEN ENDEXI T
of fset=VAL(rewite)+1
LOOP
EXI TI F of fset >256 THEN ENDEXI T
nodl oc=| oc+of fset -1
PRI NT USING "h4,"' - ', h2",nodl oc, buffer(of fset);
INPUT ":" ,rewite
EXITIF rewite="" THEN ENDEXI T
IF rewrite<>" " THEN
buffer(offset)=VAL(rewite)
ENDI F
of f set =of f set +1
ENDL OCP
ENDL OCP
INPUT "rewrite sector? ",rewite
|F LEFTS(rewite, 1)="Y" OR LEFT$(rewite, 1)="y" THEN
SEEK #pat h, | oc
PUT #pat h, buf fer
ENDI F
ENDL OCP
CLOSE #path
BYE

PROCEDURE DunpBuf f er
(* Called by PATCH *)
TYPE buf fer=char (8):1NTEGER
PARAM | oc: REAL; |ine(16): buffer
DIMi,j:|NTEGER
WHI LE | 0c>65535. DO
| oc=I oc- 65536.
ENDVWHI LE
FOR j=1 TO 16
PRI NT USI NG "h4", FI X(I NT(l oc)) +(j-1)*16;

PRI NT ":*";
FOR i=1 TO 8
PRI NT USING " X1, H4",line(j).char(i);
NEXT
RUN printascii(line(j))
PRI NT
NEXT j

PROCEDURE Pri nt ASCI
TYPE buffer=char (16): BYTE
PARAM | i ne: buf fer
DI M ascii: STRING nextchar: BYTE; i:|NTEGER
ascii=""

83

FOR i=1 TO 16
next char =l i ne. char (i)
| F nextchar>127 THEN
next char =next char- 128
ENDI F
| F next char<32 OR nextchar>125 THEN
ascii=ascii+" "

ELSE
asci i =asci i +CHR$(next char)
ENDI F
NEXT
PRINT " "; ascii;

PROCEDURE MakePr oc

(* Generates an 0OS-9 conmand file to apply a conmand *)

(* Such as copy, del, etc., to all files in a directory *)
(* or directory system Author: L. Crane *)

DI M Di rPat h, ProcPat h, i, j, k: 1 NTEGER

DI M CopyAl |, CopyFi | e: BOOLEAN

DI M ProcNane, Fi | eName, Rel nput , ReQut put , r esponse: STRI NG
DIM SrcDir, DestDir, DirLine: STRI NF 80]

DI M Function, Opti ons: STRI N 60]

DI M ProcLi ne: STRI N 160]

Pr ocName=" CopyDi r"
Funct i on=" Copy"
Opti ons="#32k"
REPEAT
PRI NT "Proc nanme ("; ProcName; ")";
I NPUT response
| F response<>"" THEN
ProcNane=TRI M(r esponse)
ENDI F

ON ERROR GOTO 100
SHELL "del "+ProcNane
100 ON ERROR
I NPUT "Source Directory? ",SrcDr
SrcDi r=TRI Mb(SrcDir)
ON ERROR GOTO 200
SHELL "del procnaker...dir"
200 ON ERROR
SHELL "dir "+SrcDir+" >procrmaker...dir"
OPEN #Di r Pat h, " procrmaker. .. dir": READ
CREATE #Pr ocPat h, ProcNanme: WRI TE
PRI NT "Function ("; Function; ")";
I NPUT response
| F response<>"" THEN
Funct i on=TRI Mp(r esponse)
ENDI F
I NPUT "Redirect Input? ", response
| F response="y" OR response="Y" THEN
Rel nput ="<" \ ELSE \Relnput=""
ENDI F
| NPUT "Redirect Qutput? ",response
| F response="y" OR response="Y" THEN

ReQut put=">" \ ELSE \ReCutput=""
ENDI F
PRI NT "Options ("; Options; ")";
I NPUT response
| F response<>"" THEN
Opt i ons=TRI M(r esponse)
ENDI F
I NPUT "Destination Directory? ",DestDir
Dest Di r =TRI Mp(Dest Di r)
VWRI TE #ProcPath, "t"
VWRI TE #ProcPat h, " TWbde .1 -pause”
READ #Di r Pat h, Di r Li ne
I NPUT "Use all files? ",response
CopyAl | =response="y" OR response="Y"
VWHI LE NOT(ECF(#Di r Pat h)) DO
READ #Di r Pat h, Di r Li ne
i =LEN(TRI MB(Di r Li ne))
IF i>0 THEN
j=1
REPEAT
k=j
WHI LE j<=i AND M D$(DirLine,j,1)<>" " DO
j=j+1
ENDVWHI LE
Fi | eNane=M D$(Di r Li ne, k, j - k)
I F NOT(CopyAll') THEN
PRINT "Use "; FileNane;
I NPUT response
CopyFi | e=response="y" OR response="Y"
ENDI F
| F CopyAl Il OR CopyFile THEN
ProcLi ne=Functi on+" "+Rel nput +SrcDi r+"/" +Fi | eNane
| F DestDir<>"" THEN
ProcLi ne=ProcLi ne+" "+ReQut put +Dest Di r +"/ " +Fi | eNane
ENDI F
ProcLi ne=ProcLi ne+" "+QOpti ons
WRI TE #ProcPat h, ProcLi ne
ENDI F
VWHI LE j<i AND MD$(DirLine,j,1)=" " DO
j=j+1
ENDVWHI LE
UNTI L j>=i
ENDI F
ENDVWHI LE
VWRI TE #ProcPat h, " TWMbde .1 pause”
VWRI TE #ProcPath,"Dir e "+SrcDir
| F DestDir<>"" THEN
VWRI TE #ProcPath,"Dir e "+DestDir
ENDI F
CLOSE #Di r Pat h
CLOSE #Pr ocPat h
SHELL "del procnaker...dir"
PRI NT
I NPUT " Anot her ? ", response
UNTI L response<>"Y" AND response<>"y"
| F response<>"B" AND response<>"b" THEN
BYE
ENDI F

85

khkkkhkkhkkhkkhkhkkhkhk*k

* | NKEY - a subroutine for

E I I I

0021
0081

0000 87CDOO5F

000D 496E6B65
0000

0000

0002

0004

0006

0008

000A

0012 3064
0014 EC62
0016 10830001
001A 2717
001C 10830002
0020 2635
0022 ECF804
0025 AE66
0027 301F
0029 2706
002B 301F
002D 2628
002F 1F98
0031 3068
0033 EEO02
0035 AE84
0037 CoFF
0039 E784
003B 11830002
003F 2502
0041 E701
0043 Co01
0045 103F8D
0048 2508
004A 108E0001
004E 103F89
0051 39

0052 Ci1F6
0054 2603
0056 39

0057 Co638
0059 43

005A 39

(VAvAvEvEvAwRW)

(Standard I nput

if not specified),
character in the String Variable.
null string is returned.
ei ther type BYTE or

TYPE
REVS

| nKeyNam

Ret urn
PCount
Par aml
Lengt hl
Par an®
Lengt h2
| nKeyEnt

I nKey10
I nKey20

I nKey30

I nKey90

Par amEr r
| nKeyErr

Call ed by: RUN I NKEY(Str Var)
RUN | NKEY(Pat h, StrVar)

I nkey deternmines if a key has been typed on the given path

and if so, returns the next

If no key has been type, the

If a path is specified, it nmust be

| NTEGER

set
set

nod

fcs
org
rnb
rnb
rnb
rnb
rnb
rnb
| eax
| dd
cnpd
beq
cnpd
bne
| dd
| dx
| eax
beq
| eax
bne
tfr
| eax
| du
| dx
| db
stb
crpu
bl o
stb
| db

bcs
| dy
0s9
rts
cnpb
bne
rts
| db
coma
rts

BASI C09 by Robert

Dogget t

SBRTN+OBJCT

REENT+1

| nKeyEnd, | nKeyNam TYPE, REVS
, | nKeyEnt , 0

"I nkey"
0

NNNNDNDN

Paranil, S
PCount, S
#1

I nKey20
#2

Par antr r
[Parani, S]
Lengt hl, S
-1, X

I nKey10
-1, X

Par antr r
B, A
Paran2, S
2, X

0, X

#$FF

0, X

#2

I nKey30
1, X

#SS. Ready
| $Get St t

I nKey90
#1

| $Read

#E$Not Rdy
| nKeyErr

#E$Par am

Par anmet er s

Return addr of caller
Num of parans foll ow ng
1st param addr

si ze

2nd par am addr

si ze

Cet paranmeter count

j ust one paraneter?
..Yes; default path A=0
Are there two parans?
No, abort

Get path nunber

byt e avail abl e?

. Yes; (A =Path number
I nt eger ?

. No; abort

l ength of string
addr of string

Initialize to null str

at |least two-byte str?
. No

put str term nator

is there an data ready?
.No; exit

Read one byte

(carry clear)
Paranmeter Error

86

005B 1A6926
005E

enod
| nKeyEnd equ

*

87

88

Table B.1. System Mode Commands

$
BYE
CHD

CHX
DIR
E

EDIT
KILL
LIST

TableB.2. Edit Mode Commands

+
+*

*

Table B.3. Debug Mode Commands

$
BREAK
CONT

DEG
DIR
END

LET
LIST
PRINT

Table B.4. Program Reserved Words

ABS
ACS
ADDR
AND
ASC
ASN
ATN
BASE
BOOLEAN
BYE
BYTE
CHAIN
CHD
CHR$
CHX
CLOSE
COS
CREATE
DATA
DATE$
DEG
DELETE
DIM

DIR

DO
ELSE
END
ENDEXIT
ENDIF
ENDLOOP
ENDWHILE
EOF
ERR
ERROR
EXEC
EXITIF
EXP
FALSE
FIX
FLOAT
FOR
GET
GOSUB
GOTO

IF
INPUT

INT
INTEGER
KILL
LAND
LEFT$
LEN
LET
LNOT
LOG
LOG10
LOOP
LOR
LXOR
MID$
MOD
NEXT
NOT
ON
OPEN
OR
PARAM
PAUSE

Appendix B. Quick Reference

LOAD
MEM
PACK

I*

RAD
STATE

PEEK

PI
POKE
POS
PRINT
PROCEDURE
PUT
RAD
READ
REAL
REM
REPEAT
RESTORE
RETURN
RIGHT$
RND
RUN
SEEK
SGN
SHELL
SIN
SIZE

SQ

RENAME
RUN
SAVE

r*

S*

STEP
TROFF
TRON

SQR
SQRT
STEP
STOP
STR$
STRING
SUBSTR
TAB
TAN
THEN
TO
TRIMS
TROFF
TRON
TRUE
TYPE
UNTIL
UPDATE
USING
VAL
WHILE
WRITE
XOR

89

Table B.5. BASIC09 Statements

BASEO ELSE GOTO OPEN RETURN
BASE 1 END IF/THEN PARAM RUN
BYE ENDEXIT INPUT PAUSE SEEK
CHAIN ENDIF KILL POKE SHELL
CHD ENDLOOP LET PRINT STOP
CHX ENDWHILE LOOP PUT TROFF
CLOSE ERROR NEXT RAD TRON
CREATE EXITIFTHEN ON ERROR READ TYPE
GOTO
DATA FOR/TO/STEP ON/GOSUB REM UNTIL
DEG GET ON/GOTO REPEAT WHILE/DO
DELETE GOSuUB RESTORE WRITE
DIM

TableB.6. Transcendental Functions

ACS (x) COS (x) LOG10 (X) SIN (X)
ASN (x) EXP (X) Pl TAN ()
ATN (x) LOG (x)

TableB.7. Numeric Functions

ABS(x) LAND (m,n) MOD (m,n) SQ (X)
FIX (x) LNOT (m,n) RND (x) SQR (x)
FLOAT (m) LOR (m,n) SGN (x) SQRT (x)
INT (x) LXOR (m,n)

Table B.8. String Functions

ASC (char$) LEFT$ (str$,m) RIGHT$ (str$,m) TRIMS (str$)
CHR$ (m) LEN (str$) STR$ (x) VAL(str$)
DATES$ MIDS$ (str$,m,n) SUBSTR(st1$,st2$)

Table B.9. Miscellaneous Functions

ADDR (var) FALSE POS TAB (m)
EOF (#path) PEEK (addr) SIZE (var) TRUE
ERR

Table B.10. Operator Precedence

highest-> NOT -(negate)

N *%

> < <> = >= <=

lowest ->

OR

XOR

91

92

Appendix C. BASICO09 Error Codes

10 - Unrecognized Symbol

11 - Excessive Verbage (too many keywords or symbols)
12 - lllegal Statement Construction

13 - I-code Overflow (need more workspace memory)
14 - lllegal Channel Reference (bad path number given)
15 - lllegal Mode (Read/Write/Update/Dir only)

16 - lllegal Number

17 - Illegal Prefix

18 - lllegal Operand

19 - lllegal Operator

20 - Illegal Record Field Name
21 - Illegal Dimension

22 - |llegal Literal

23 - |llegal Relational

24 - |llegal Type Suffix

25 - Too-Large Dimension

26 - Too-Large Line Number

27 - Missing Assignment Statement
28 - Missing Path Number

29 - Missing Comma

30 - Missing Dimension

31 - Missing DO Statement

32 - Memory Full (need more workspace memory)
33 - Missing GOTO

34 - Missing Left Parenthesis

35 - Missing Line Reference

36 - Missing Operand

37 - Missing Right Parenthesis

38 - Missing THEN statement

39 - Missing TO

40 - Missing Variable Reference
41 - No Ending Quote

42 - Too Many Subscripts

43 - Unknown Procedure

44 - Multiply-Defined Procedure
45 - Divide by Zero

46 - Operand Type Mismatch

47 - String Stack Overflow

48 - Unimplemented Routine

49 - Undefined Variable

50 - Floating Overflow

51 - Line with Compiler Error

52 - Vaue out of Range for Destination
53 - Subroutine Stack Overflow

54 - Subroutine Stack Underflow

55 - Subscript out of Range

56 - Parameter Error

57 - System Stack Overflow

58 - 1/0 Type Mismatch

59 - I/O Numeric Input Format Bad

93

60 - I/0O Conversion: Number out of Range
61 - lllegal Input Format

62 - 1/0O Format Repeat Error

63 - I/0O Format Syntax Error

64 - Illegal Path Number

65 - Wrong Number of Subscripts

66 - Non-Record-Type Operand

67 - lllegal Argument

68 - Illegal Control Structure

69 - Unmatched Control Structure

70 - lllegal FOR Variable

71 - Illegal Expression Type

72 - |llegal Declarative Statement
73 - Array Size Overflow

74 - Undefined Line Number

75 - Multiply-Defined Line Number
76 - Multiply-Defined Variable
77 - lllegal Input Variable

78 - Seek Out of Range

79 - Missing Data Statement

80 - Print Buffer Overflow

Error codes above 80 are those used by OS-9 or other external programs. Consult the OS9 User's
Guidefor alist of error codes and explanations.

94

Appendix D. RunB

RunB is the the BASICO09 run-time package. It is similar to BASIC09 with the following exceptions:
RunB is about half the size of BASIC09 and no file editing or debugging can be done. The main
purpose of RunB is to save space and to execute packed modules. It should be noted that RunB will
only execute packed modules. Another feature of RunB isthat CONTROL-C and CONTROL-Q can
be trapped by ON ERROR GOTO where BASIC09 can't.

When the name of a packed moduleistyped at the OS-9 prompt, Shell will determine that the module
is packed BASICO9 I-code. Shell then loads and forks RunB, and RunB will link to and execute the
named program. To run packed modules in this way, RunB must be in the commands directory.

Packed modules can be executed without RunB, but BASICO09 will have to be used and more space
will be required.

95

96

Appendix E. The BASICO09 Graphics
Interface Module

The Graphics Interface module provides a simple and convenient way to access the colour graphics
and joystick functions of the Dragon Computer from BASIS09 programs. The module is a program
written in assembly language and stored in afile called “GFX”. It can be loaded into memory using
the OS-9 “LOAD” command prior to or after called BASIS09, or it will be automatically called by
BASIS09 the first time it is referenced in a program if the “GFX” file is located in the execution
(“CMDS") directory.

“GFX" iscalled using the BASIS09 “RUN” statement. The first parameter passed is the name of the
graphics function desired. Other parameters are used to pass coordinates, colour modes, etc.

The are two basic graphics modes: 4-colour having 128 by 192 pixel resolution, and 2-colour having
256 by 192 pixel resolution. The display is treated as a 256 by 192 point grid with coordinates 0,0 in
the lower left-hand corner. X (horizontal) coordinates in either mode must be in the range of 0 to 255.
An X-coordinate greater than 255 will cause arun-time error. Y coordinates (vertical) must bein the
range of 0to 191. A number greater than 191 will be replaced by 191. Some of the graphics functions
require or optionally accept a colour mode which controls the foreground colour and colour set. The
mode and colour codes are given in the table on the next page.

TableE.1. Colour Graphics Modes and Colour Codes

Colour Two Colour Format Four Colour Format
Code Background Foreground Background Foreground

00 Black Black Green Green
Colour 01 Black Green Green Yellow
Setl 02 Green Blue

03 Green Red

04 Black Black Buff Buff
Colour 05 Black Buff Buff Cyan
Set 2 06 Buff Magenta

07 Buff Orange

08 Black Black
Colour 09 Black Dark Green
Set 3 10 Black Med. Green

11 Black Light Green

12 Black Black
Colour 13 Black Green
Set 4* 14 Black Red

15 Black Buff

Note

Colour Sets 3 and 4 are not available on PAL video system (U.K. and European) models.

MODE

RUN GFX(" Mode", f or mat, col our)

97

MOVE

MODE switches the screen from al phanumeric to graphics display mode, and sel ects the screen mode
and colour mode. “Format” determines between two-colour (Format = 0), or four-colour (Format = 1)
graphics modes. “Colour” istheinitial colour code that specifiesthe foreground colour and colour set.

This command must be given before aby other graphics command is used. The first time MODE is
called, it requests 6K bytes of memory from OS-9 for use as the graphics display memory. MODE
will return an error if sufficient free memory is not available.

An example:

RUN GFX(" Mode", 1, 3)

selects four-colour mode graphicsis used, and theinitial foreground colour is red.

MOVE

RUN GFX(" Move", X, y)

MOVE positionsthe (invisible) graphics cursor to the specified | ocation without changing the display.
X and Y arethe coordinates of the new position.

Example:

RUN GFX("Move", 0, 0)

This example positions the cursor in the lower left-hand corner.

COLOR

RUN GFX(" Col or", col our)

COLOR changes the current foreground colour (and possibly the colour set). The current graphics
mode and cursor position are not changed. For example:

RUN GFX(" Col or", 0)

changes the foreground colour to green in four-colour format (or black in two-colour format).

POINT

RUN GFX("Point", x,y) or
RUN GFX("Point", x,y, col our)

POINT movesthe graphics cursor to the specified X.Y coordinate and sets the pixel at that coordinate
to the current foreground colour. If the optional “Colour” is specified, the current foreground colour
is set to the given “Colour”. For example:

RUN GFX("Point", 0,192, 1)

Point moves the cursor to the upper left-hand corner and changes the foreground colour to green in
two-colour format, or it changes the colour to yellow in the four-colour format.

CLEAR

RUN GFX("dO ear") or
RUN GFX("Cl ear", col our)

98

LINE

LINE

CLEAR resets all points on the screen to the background colour, or if the optional colour is given
presets the screen to that colour. The current graphics cursor is reset to (0,0).

RUN GFX("Line", x2,y2)

RUN GFX("Line", x2,y2, col our)

RUN GFX("Line",x1,yl, x2,y2)

RUN GFX("Line", x1,yl, x2,y2, col our)

LINE drawslinesin various ways. If one coordinate is given, the line will be drawn from the current
graphics cursor position to the coordinates specified. If two sets of coordinates are given, they are used
as the start and end points of the line. The line will be drawn in the current foreground colour unless
anew colour is given as a parameter. After the line is drawn the graphics cursor will be positioned
at x2,y2. For example

RUN GFX("Line", 0,0, 0, 192)

draws aline from (0,0) to (0,192).

RUN GFX("line", 24, 65, 2)

draws a blue line (4-colour mode) to point 24,65.

CIRCLE

RUN GFX("Circl e", radius)

RUN GFX("Circle", radius, col our)

RUN GFX("Circle", x,y, radius)

RUN GFX("Circle", x,y,radius, col our)

CIRCLE drawsacircle of the given radius. The current graphics cursor position is assumed if no X,Y
value is given. The current foreground colour is assumed if the Colour parameter is not used. The
center of the circle must be on the screen.

ALPHA

QUIT

RUN GFX("Al pha")

Alphais a quick convenient way of getting the screen back to aphanumeric mode. When graphics
mode is entered again, the screen will show the previous unchanged graphics display.

RUN GFX("Quit")

QUIT returns the 6K byte graphics display memory to OS-9. If the screen is not in apha mode, then
behaviour is undetermined.

GLOC

RUN GFX("d oc", vdi sp)

GLOC returns the address of the video display RAM as an integer number. This address may be used
in subsequent PEEK and POK E operations to access the video display directly. GLOC can be used to
create special functions that are not available in the Graphics Module.

99

GCOLR

GCOLR

RUN GFX(" Ccol r", col our)
RUN GFX("Ccol r", x,y, col our)

GCOLR is used to read the colour of the pixel at the current graphics cursor position, or from the
coordinates X,Y. The parameter “Colour” may be an integer or a byte variable in which the colour
code isreturned.

JOYSTK

RUN GFX("Joystk",stick,fire, x,y)

JOY STK returns the status of the specified joystick's Fire button, and returns the X,Y position of
the joystick. The Fire button may be read asa BYTE, INTEGER, or a BOOLEAN vaue. Non-zero
(TRUE) meansthe button waspressed. The X,Y valuesreturned may be BY TE or INTEGER variables,
and they will bein the range 0 to 63. The Stick parameter may be BY TE or INTEGER, and should be
0 for RIGHT, or 1 for LEFT, depending on whether the RIGHT or the LEFT joystick isto be tested.

Example:

RUN GRX("Joystk",1,leftfire,leftx,lefty)

A Sample Graphics Program

The program on the next page illustrates how the GFX moduleis called and used. It creates an analog
clock on the graphics display.

PROCEDURE cl k

0000 (* Sinple Cock Sinulator *)

0oicC DIMtime(4),last(4),xx(3),yy(3): | NTEGER
0043 DI M x0, y0, radi us, bkg: | NTEGER

0056 DIMi,j,x1,y1,x2,y2: | NTEGER

0071 DEG

0073 bkg=0

007A x0=128

0081 y0=96

0088 radi us=95

008F RUN GFX("MODE", 1, bkg+1)

00A5 RUN GFX(" CLEAR")

00B2 RUN GFX("Cl RCLE", x0, y0, r adi us)

00CF FOR i=0 to 89 STEP 6

00E4 x2=SI N(i) *radi us

O00F4 y2=COS(i) *radi us

0104 x1=x2*.9

0115 yl=y2*.9

0126 j =MOD(i / 30, 3) +bkg+1

013B RUN GFX(" LI NE", x0+x1, yO+y1, x0+x2, yO+y2,j)
016C RUN GFX("LINE", x0-x1, y0-y1, x0-x2,y0-y2,j)
019D RUN GFX(" LI NE", x0+y1, y0- x1, x0+y2, y0-x2,j)
01CE RUN GFX("LINE", x0-y1, yO+x1, x0-y2, yO+x2,j)
01FF NEXT

020A FOR i=1 TO 3

021A time(i)=0

0225 xx(i)=x0

100

A Sample Graphics Program

0231
023D
0248
024A
0250
0258
026E
0284
02A9
02B3
02C9

0300
032B
035A
0389
03B7
03B9
034
03CF
03D3

yy(i)=yO0
NEXT
LOooP
t i ne$=DATES$
| ast=tine
ti me(3)=VAL(M D$(tine$, 16,2))*6
time(2)=VAL(M D$(tine$, 13,2))*6
time(1)=MOD(VAL(M D$(time$, 10, 2))*30+tinme(2)/12, 360)
j =l ast (3)
FOR i=3 TO 1 STEP -1
IF i=3 ORj=0 OR ABS(tinme(i)-last(i+l))<6 OR
ABS(tinme(i)-j)<6 THEN
RUN GFX(" LI NE", x0, yO, xx(i),yy(i), bkg)
XX(1)=x0+SIN(time(i))*radius*(.3+i*.2)
yy(i)=y0+COS(time(i))*radius*(.3+i*.2)
RUN GFX("LINE", x0, y0, xx(i),yy(i), bkg+i)
ENDI F
NEXT
WHI LE ti me$=DATE$ DO
ENDVWHI LE
ENDL OCP

101

102

	BASIC09
	Table of Contents
	Introduction
	Comments on BASIC09
	The History of BASIC09

	Introduction to BASIC09 Programming
	What is a Program?
	A Simple BASIC09 Program
	Basic Programming Techniques: Loops and Arithmetic
	Listing Procedure Names
	Requesting More Memory
	Storing and Recalling Programs
	How to Print Program Listings
	BASIC09's Four Modes:
	More about the Workspace...
	Where to go From Here?

	System Mode
	System Mode Commands

	Edit Mode
	Overview of Edit Commands
	How the Editor Works
	Line-Number Oriented Editing
	String-Oriented Editing
	Moving the Edit Pointer
	Inserting Lines
	Deleting Lines
	Listing Lines
	Search: Finding Strings
	Change: String Substitution

	Execution Mode
	Running Programs
	Execution Mode: Technically Speaking

	Debug Mode
	Overview of Debug Mode
	Debug Mode Commands
	Debugging Techniques
	Debug Mode as a Desk Calculator

	Data Types, Variables and Data Structures
	Why are there different data types?
	Data Structures
	Atomic Data Types
	Type BYTE
	Type INTEGER
	Type REAL
	Type STRING
	Type BOOLEAN
	Automatic Type Conversion

	Constants
	Numeric Constants
	Boolean Constants
	String Constants

	Variables
	Parameter Variables
	Arrays
	Complex Data Types

	Expressions, Operators, and Functions
	Evaluation of Expressions
	Operators
	Operator Precedence

	Functions

	Program Statements and Structure
	Program Structure
	Line Numbers
	Assignment Statements
	LET Statement
	POKE Statement

	Control Statements
	IF Statement: Type 1
	IF Statement: Type 2
	FOR/NEXT Statement
	WHILE..DO Statement
	REPEAT..UNTIL Statement
	LOOP and ENDLOOP/EXITIF and ENDEXIT Statements
	GOTO Statement
	GOSUB/RETURN Statements
	ON GOTO/GOSUB Statement
	ON ERROR GOTO Statement

	Execution Statements
	RUN Statement
	Parameter Passing
	Calling External Procedures

	KILL Statement
	CHAIN Statement
	SHELL Statement
	END Statement
	STOP Statement
	BYE Statement
	ERROR Statement
	PAUSE Statement
	CHD and CHX Statements
	DEG and RAD Statements
	BASE 0 and BASE 1 Statements
	TRON and TROFF Statements
	Comment Statements

	Declarative Statements
	DIM Statement
	Declaring Simple Variables
	Array Declarations

	PARAM Statement
	TYPE Statement

	Input and Output Operations
	Files and Unified Input/Output
	I/O Paths
	INPUT Statement
	PRINT Statement
	OPEN Statement
	CREATE Statement
	CLOSE Statement
	DELETE Statement
	SEEK Statement
	WRITE Statement
	READ Statement
	GET/PUT Statement

	Internal Data Statements
	DATA/READ/RESTORE Statements

	Formatted Output: The Print Using Statement
	Real Format
	Exponential Format
	Integer Format
	Hexadecimal Format
	String Format
	Boolean Format
	Control Specifications
	Repeat Groups

	Program Optimization
	General Execution Performance of BASIC09
	Optimum Use of Numeric Data Types
	Looping Quickly
	Optimum Use of Arrays and Data Structures
	The PACK Command
	Eliminating Constant Expressions and Sub-Expressions
	Fast Input and Output Functions
	Professional Programming Techniques

	Appendix A. Sample Programs
	Appendix B. Quick Reference
	Appendix C. BASIC09 Error Codes
	Appendix D. RunB
	Appendix E. The BASIC09 Graphics Interface Module

